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Unfortunately I had a horrible bicycle accident during the summer, pushing back
the release of these notes by 4 weeks. I also had exams to prepare for myself, making
it difficult to catch up and find the time to finalise these notes. I wished there to be
many more examples and calculations to make some of the more abstract content more
reachable. Alas. Here are 50 something pages on some of the things I thought about
when teaching.

I apologise for incomplete proofs and trailing sentences. If you find any glaring
errors, send me an email, and I will try to fix them. Of course questions are always
welcome.
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Linear Algebra

1

Injectivity, Surjectivity and composition

Definition (Image of a map). Let 𝑓 ∶ 𝑋 −→ 𝑌 be a map. The image of 𝑓 is defined to
be

im(𝑓) = {𝑦 ∈ 𝑌 ∣ ∃𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) = 𝑦} = {𝑓(𝑥) ∈ 𝑌 ∣ 𝑥 ∈ 𝑋} ⊆ 𝑌.

Definition (Preimage). Let 𝑓 ∶ 𝑋 −→ 𝑌 be a map and 𝑆 a subset of 𝑌. We define
preimage of 𝑆 under 𝑓 to be

𝑓−1(𝑆) = {𝑥 ∈ 𝑋 ∣ 𝑓(𝑥) ∈ 𝑆} ⊆ 𝑋

Remark. Do not confuse the preimage with the inverse of a map, although the notation
looks similar. An important point to remember, is that the preimage of a set always
exists, but an inverse must not.

Definition (Injective, Into, One-to-one). Let 𝑓 ∶ 𝑋 −→ 𝑌 be a map. We call a map
injective or into or one-to-one if one (and therefore all) of the following equivalent
statements hold true

• For all 𝑓(𝑦), 𝑓(𝑥) in im(𝑓), such that 𝑓(𝑥) = 𝑓(𝑦) we have that 𝑥 = 𝑦.

• For all 𝑦 in 𝑌 we have |𝑓−1({𝑦})| ≤ 1.

Definition (Surjective, Onto). Let 𝑓 ∶ 𝑋 −→ 𝑌 be a map. We call a map surjective or
onto if one (and therefore all) of the following equivalent statements hold true

• For every 𝑦 in 𝑌 there is an 𝑥 in 𝑋 such that 𝑓(𝑥) = 𝑦.

• For every 𝑦 in 𝑌 we have |𝑓−1({𝑦})| ≥ 1.

• im(𝑓) = 𝑌.

Definition (Bijective, one-to-one correspondence). Let 𝑓 ∶ 𝑋 −→ 𝑌 be a map. We call a
map bijective or a one-to-one correspondence if one (and therefore all) of the following
equivalent statements hold true

• For every 𝑦 in 𝑌 there is exactly one 𝑥 in 𝑋 such that 𝑓(𝑥) = 𝑦.

• For every 𝑦 in 𝑌 we have |𝑓−1({𝑦})| = 1.

We also call a bijective map simply a bijection.
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Linear Algebra

Remark. The terms “into, onto, one-to-one, one-to-one correspondence” are older terms
that are not used in modern literature that often. This is especially true for “one-to-one”
and “one-to-one correspondence”, whereas “onto” and “into” are still used in algebraic
fields. Do not confuse the terms “one-to-one” and “one-to-one correspondence”

Lemma (Composition lemma).

1. The composition of injective maps is injective

2. The composition of surjective maps is surjective

3. The composition of bijective maps is bijective

Now let 𝑓 ∶ 𝑋 −→ 𝑌 and 𝑔 ∶ 𝑌 −→ 𝑍 be maps.

4. If 𝑔 ∘ 𝑓 is surjective then 𝑔 must be surjective (but not necessarily 𝑓).

5. If 𝑔 ∘ 𝑓 is injective, then 𝑓 must be injective (but not necessarily 𝑔).

6. If 𝑔 ∘ 𝑓 is surjective and 𝑔 injective (and therefore bijective by point 4), then
𝑓 is surjective.

7. If 𝑔 ∘ 𝑓 is injective and 𝑓 surjective (and therefore bijective by point 5), then
𝑔 is injective.
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Linear Algebra

2

Hierarchy of Sets, Groups, Fields, …

Definition ((Binary) operation, (Binäre) Verknüpfung). Let 𝑋 be a set. A binary
operation (ger. binäre Verknüpfung) on 𝑋 is a map op ∶ 𝑋 × 𝑋 −→ 𝑋. To obtain
meaningful structures, almost all of the binary operations that we will study are as-
sociative, that is, for all 𝑥, 𝑦, 𝑧 in 𝑋 we have that op(op(𝑥, 𝑦), 𝑧) = op(𝑥, op(𝑦, 𝑧)).
Common symbols used for associative binary operations are ⋅𝑋, ⋅, ⊙,+,+𝑋, ⊕. In these
cases, we write 𝑥 ⋅ 𝑦 instead of ⋅(𝑥, 𝑦). When a binary operation ⋅ is associative, it
becomes meaningful to write 𝑥 ⋅ 𝑦 ⋅ 𝑧 and we speak of an operation (dropping the term
“binary”). Often we will study operations that are commutative, that is, for all 𝑥, 𝑦
in 𝑋, op(𝑥, 𝑦) = op(𝑦, 𝑥). When a (binary) operation is commutative (and associa-
tive), we conventionally use the notations +,+𝑋 or ⊕ and when the operation is only
associative we conventionally use the notations ⋅, ⋅𝑋 or ⊙.

Definition (Closed under a binary operation). Let 𝑋 be a set equipped with the binary
operation op and 𝑌 a subset of 𝑋. We say that 𝑌 is closed under the binary operation
op if for all 𝑦, 𝑦 ′ in 𝑌 we have that op(𝑦, 𝑦 ′) also lies in 𝑌.

Definition (A semigroup). A (commutative) semigroup is a tuple (𝑆, ⋅) comprising a
set 𝑋 equipped with an associative (commutative) binary operation ⋅.

Definition (Neutral element of a binary operation). Let 𝑋 be a set with a binary
operation op ∶ 𝑋 × 𝑋 −→ 𝑋. We say that 𝑒 in 𝑋 is a neutral element of the binary
operation op if for all 𝑥 in 𝑋 we have that op(𝑥, 𝑒) = op(𝑒, 𝑥) = 𝑥. This is often
shortened to “𝑒 is a neutral element”.

Proposition (Neutral elements are unique). Any two neutral elements of an oper-
ation are equal.

Proof. Let 𝑋 be a set and op ∶ 𝑋 × 𝑋 −→ 𝑋 a binary operation. Suppose 𝑒, 𝑔 are both
neutral elements of op. Then op(𝑒, 𝑔) = 𝑒 by neutrality of 𝑔. On the other hand
op(𝑒, 𝑔) = 𝑔 by neutrality of 𝑒. Hence 𝑒 = op(𝑒, 𝑔) = 𝑔.

Remark. When we furnish a set 𝑋 with a binary operation op, we often say “𝑋 is
associative/commutative” when we mean that the binary operation op equipped to 𝑋
is associative/commutative.

Corollary. Since neutral elements are unique, we may speak of the neutral element
of an operation.
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Definition (Monoid). A (commutative)monoid is a tuple (𝑀, ⋅, 𝑒) comprising a (com-
mutative) semigroup (𝑀, ⋅) together with a distinguished element 𝑒 which is the neutral
element.

Definition (Inverse with respect to the operation). Let (𝑀, ⋅, 𝑒) be a monoid and 𝑥, 𝑦
elements of 𝑀. 𝑦 is said to be an inverse of 𝑥 if 𝑥 ⋅ 𝑦 = 𝑦 ⋅ 𝑥 = 𝑒. If 𝑥 has an inverse,
then 𝑥 is said to be invertible.

Proposition (Inverse elements are unique). Let 𝑥 be an element of a monoid (𝑀, ⋅, 𝑒)
and 𝑦,𝑤 both inverses of 𝑥. Then 𝑤 = (𝑥 ⋅ 𝑦) ⋅ 𝑤 = (𝑦 ⋅ 𝑥) ⋅ 𝑤 = 𝑦 ⋅ (𝑥 ⋅ 𝑤) = 𝑦.

Corollary. Since inverse elements are unique, we may speak of the inverse of an
element 𝑥.

Definition (Group). A (commutative) group is a (commutative) monoid (𝐺, ⋅, 𝑒) such
that every element in 𝐺 has an inverse.

Definition (Subgroup). Let (𝐺, ⋅𝐺, 𝑒𝐺) be a group. A subset 𝐻 of 𝐺 is a subgroup of
𝐺 if it satisfies the following three conditions

(i) 𝐻 contains 𝑒𝐺;

(ii) 𝐻 is closed under ⋅𝐺, that is for all ℎ, ℎ ′ in 𝐻, we have that ℎ ⋅ ℎ ′ lies in 𝐻;

(iii) and for every ℎ in 𝐻, ℎ−1 also lies in 𝐻.

Important consequences of this definition: If 𝐻 is a subgroup of 𝐺, it is closed under
⋅𝐺, so we can restrict ⋅𝐺 ∶ 𝐺 × 𝐺 −→ 𝐺 to ⋅𝐻 ∶ 𝐻 × 𝐻 −→ 𝐻; (ℎ, ℎ ′) ↦ ℎ ⋅𝐺 ℎ ′. Also, since
𝑒𝐺 is the neutral element of ⋅𝐺 it is also the neutral element of our newly defined ⋅𝐻, so
we write 𝑒𝐻 = 𝑒𝐺. Consequently (𝐻, ⋅𝐻, 𝑒𝐻) is a group.

Definition (Ring, Non-unitary, Rng). A (commutative) ring is a tuple (𝑅,+, 0, ⋅) so
that (𝑅,+, 0) is a commutative group, (𝑅, ⋅) is a (commutative) semigroup and the
operations +, ⋅ distribute as follows: for all 𝑎, 𝑏, 𝑐 in 𝑅 we have

𝑎 ⋅ (𝑏 + 𝑐) = 𝑎 ⋅ 𝑏 + 𝑏 ⋅ 𝑐 and (𝑎 + 𝑏) ⋅ 𝑐 = 𝑎 ⋅ 𝑐 + 𝑏 ⋅ 𝑐.

We call the commutative operation + addition and the not necessarily commutative
operation ⋅ multiplication. Often, we omit the ⋅ in multiplications and just write
𝑎 ⋅ 𝑏 = 𝑎𝑏.

Some authors describe also describe this as an Non-unitary ring or a Rng (“ring”
without the multiplicative “i”dentity).
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Linear Algebra

Remark. Note that the additive operation of a ring is always commutative. A non-
commutative ring still has commutative addition, but the multiplication is not com-
mutative. A good example is the set of 𝑛 × 𝑛 matrices.

Definition (Unitary Ring). A (commutative) unitary ring is a tuple (𝑅,+, 0, ⋅, 1) so
that (𝑅,+, 0, ⋅) is a (commutative) ring and (𝑅, ⋅, 1) is a (commutative) monoid.

Example (A Rng that is not unitary). The even integers constitute a rng, but not
a unitary ring.

Definition* (Module (Generalisation of a vector space)). Let (𝑅,+𝑅, 0𝑅, ⋅𝑅, 1) be a
unitary ring. A left 𝑅-module is a tuple (𝑀,+𝑀, 0𝑀, ⋅𝑀,𝑙) for which (𝑀,+𝑀, 0𝑀) is a
commutative group together with a binary operation ⋅𝑀,𝑙 ∶ 𝑅 × 𝑀 −→ 𝑀 which we call
left scalar multiplication that is associative and distributive. That is, for all 𝑟, 𝑠 in 𝑅
and 𝑥, 𝑦 in 𝑀 we have

𝑟 ⋅𝑀,𝑙 (𝑠 ⋅𝑀,𝑙 𝑥) = (𝑟 ⋅𝑅 𝑠) ⋅𝑀,𝑙 𝑥

𝑟 ⋅𝑀,𝑙 (𝑥 +𝑀 𝑦) = 𝑟 ⋅𝑀,𝑙 𝑥 +𝑀 𝑟 ⋅𝑀,𝑙 𝑦

(𝑟 +𝑅 𝑠) ⋅𝑀,𝑙 𝑥 = 𝑟 ⋅𝑀,𝑙 𝑥 +𝑀 𝑠 ⋅𝑀,𝑙 𝑥

1 ⋅𝑀,𝑙 𝑥 = 𝑥.

The multiplication 𝑟 ⋅𝑅 𝑠 happens in the ring 𝑅. A right 𝑅-module is a also a com-
mutative group (𝑀,+𝑀, 0𝑀) but with a binary operation ⋅𝑀,𝑟 ∶ 𝑀 × 𝑅 −→ 𝑀 that is
associative and distributive analogously. For a left module, multiplication from the left
is permitted, for a right module multiplication from the right is permitted. If there is
a multiplication from both sides, we call 𝑀 simply an 𝑅-module, however we note that
in general 𝑠 ⋅𝑀,𝑙 𝑥 ≠ 𝑥 ⋅𝑀,𝑟 𝑠.

Definition (Units of a ring). An element 𝑢 of a ring 𝑅 is said to be a unit of 𝑅 if 𝑢 is
invertible. That is, there exists a 𝑣 in 𝑅 such that 𝑢𝑣 = 𝑣𝑢 = 1. We denote the units
of a ring by 𝑅×.

Definition (Field). A field is a commutative unitary ring (𝑘,+, 0, ⋅, 1) for which one
(and therefore all) of the following equivalent conditions is true

• (𝑘 ⧵ {0} , ⋅, 1) is a group.

• 𝑘× = 𝑘 ⧵ {0}.

• Every non-zero element in 𝑘 is invertible.

The second condition is why some authors define 𝑘× def.= 𝑘 ⧵ {0}.
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Linear Algebra

Definition (Vector space). Let 𝑘 be a field. A 𝑘-vector space is a tuple (𝑉 ,+𝑉, 0𝑉, ⋅𝑉)
such that (𝑉 ,+𝑉, 0𝑉) is a commutative group together with two associative binary
operations ⋅𝑙 ∶ 𝑘 × 𝑉 −→ 𝑉 scalar multiplication from the left and ⋅𝑟 ∶ 𝑉 × 𝑘 −→ 𝑉 scalar
multiplication from the right such that for all 𝜆 in 𝑘 and 𝑣 in 𝑉 we have 𝜆 ⋅𝑙 𝑣 = 𝑣 ⋅𝑟 𝜆.
Due to symmetry, we call both of these operations scalar multiplication and simply
denote them by ⋅. Moreover, this scalar multiplication is distributive. That is, the
following conditions are satisfied for all 𝜆, 𝜇 in 𝑘 and 𝑣, 𝑢 in 𝑉

𝜆 ⋅ (𝜇 ⋅ 𝑣) = (𝜆𝜇) ⋅ 𝑣

𝜆 ⋅ (𝑣 +𝑉 𝑢) = 𝜆 ⋅ 𝑣 +𝑉 𝜆 ⋅ 𝑢

(𝜆 + 𝜇) ⋅ 𝑣 = 𝜆 ⋅ 𝑣 +𝑉 𝜇 ⋅ 𝑣

1 ⋅ 𝑣 = 𝑣.

In a shorter form, we say that (𝑉 ,+, 0, ⋅) is a vector space if (𝑉 ,+, 0, ⋅) is a 𝑘-module.

Definition (Linear subspace). Let 𝑘 be a field and (𝑉 ,+, 0, ⋅) a 𝑘-vector space. A
subset 𝑈 of 𝑉 is a linear subspace (German Untervektorraum) of 𝑉 if 𝑈 is a subgroup
of (𝑉 ,+, 0) and 𝑈 is closed under scalar multiplication. The distributivity properties
are given, since 𝑉 is already a vector space. Consequently, 𝑈 is also a vector space.
Equivalently, 𝑈 is a linear subspace of 𝑉 if all of the following properties are satisfied

(i) 0𝑉 lies in 𝑈;

(ii) for every 𝑢, 𝑣 in 𝑈 we have that 𝑢 + 𝑣 lies in 𝑈;

(iii) for every 𝜆 in 𝑘 and 𝑢 in 𝑈, 𝜆𝑢 also lies in 𝑈.
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3

Gaussian Elimination

(i) Row operations do not change the solutions of the system of equations.

(ii) Row operations do not represent base-change operations.
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4

Vector Spaces

Example (Operations on linear subspaces).

(i) The union of linear subspaces is not necessarily a linear subspace.

(ii) The intersection of linear subspaces is a linear subspace.

(iii) The sum 𝑉 +𝑊 = {𝑣 + 𝑤 ∣ 𝑣 ∈ 𝑉 ,𝑤 ∈ 𝑊} of two sub vector-spaces is again
a linear subspace.

Proposition (Span). Let 𝑆 be a subset of a 𝑘-vector space 𝑉. Let 𝑊 be the inter-
section of all linear subspaces of 𝑉 that contain 𝑆. Then

𝑊 = {
𝑛
∑
𝑖=1

𝜆𝑖𝑠𝑖 ∣ 𝑛 ∈ ℕ0, 𝜆𝑖 ∈ 𝑘, 𝑠𝑖 ∈ 𝑆} .

We call 𝑊 the span of 𝑆 and denote it Span(𝑆) or ⟨ 𝑆 ⟩. We also say that 𝑆 spans
or generates 𝑊 or that 𝑆 is a spanning or generating set of 𝑊. Since Span(𝑆) is the
intersection of linear subspaces it again is a linear subspace.

Proposition. A subset 𝑊 of a vector space 𝑉 is a linear subspace if and only if
Span(𝑊) = 𝑊.

rrueger@ethz.ch - n.ethz.ch/~rrueger 8

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/


Linear Algebra

5

Equivalences of linear (in)dependence

Proposition (Linear (in)dependence). Let (𝑉 ,+, 0𝑉, ⋅) be a 𝑘-vector space, 𝑆 a subset
thereof and𝑊 = Span(𝑆). We say that 𝑆 is linearly independent if one (and therefore
all) of the following equivalent conditions holds:

(i) There is no non-trivial linear combination of vectors in 𝑆 to form 0𝑉.

(ii) No vector in 𝑆 can be written as a linear combination of other vectors in 𝑆.

(iii) Every vector in 𝑊 can be uniquely written as a linear combination of vectors
in 𝑆.

(iv) 𝑆 is minimal amongst 𝑊-generating sets: that is, there is no proper subset
𝑆 ′ of 𝑆 so that 𝑆 ′ generates 𝑊.

Conversely, we say that 𝑆 is linearly dependent if one (and therefore all) of the
following equivalent conditions holds:

(i) There is a non-trivial linear combination of vectors in 𝑆 that forms 0𝑉.

(ii) There is a vector 𝑠 in 𝑆 that can be written as a linear combination of vectors
in 𝑆 ⧵ {𝑠}.

(iii) There is a vector 𝑣 in 𝑉 that can be written as two different linear combina-
tions of vectors in 𝑆.

(iv) There is a proper subset 𝑆 ′ of 𝑆 that generates 𝑊.
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6

Bases

Definition (Basis). Let 𝑉 be a vector space. A subset 𝐵 of 𝑉 is called a basis of 𝑉 if
it is linearly independent and spans 𝑉.

It is conventional to say that the basis of the trivial vector space {0} is the empty
set. The only other natural candidate ℬ = {0} does not work, because {0} is not
linearly independent as a set. This convention is also consistent with the convention
that an empty sum equals 0. Indeed, we have seen that the span of any set 𝑆 ⊆ 𝑉 is
the set of elements formed by (finite) linear combinations of elements in 𝑆. If we try
this with the empty set 𝑆 = ∅, then we only obtain empty linear combinations (sums)
which, by convention are 0.

A vector space may have many different bases. In general, we can simply multiply
any basis vector by a non-zero scalar to get a new basis that is different. Of course
this does not work for the trivial vector space {0} (whose basis is the empty set) and
a vector space over 𝔽2 (because the only-non zero scalar is 1, which would not change
the basis). Indeed, let ℬ be a basis of the 𝑘-vector space 𝑉. If 𝑉 is non-trivial, then ℬ
is non-empty and we can pick a 𝑏 in ℬ. Moreover, if 𝑘 ≠ 𝔽2, then there must be some
non-zero scalar 𝜆 ≠ 1 in 𝑘. Hence we can construct a new basis ℬ′ = ℬ ⧵ (𝑏) ∪ 𝜆𝑏. That
is, we just replace the vector 𝑏 in ℬ with the scalar multiple 𝜆𝑏.

A basis balances the trade-off between being large (so that they span the whole
space), and small (so that they are still linearly independent).

Lemma (Steiniz Exchange Lemma). Let {𝑣1, … , 𝑣𝑛} be a subset of a vector space 𝑉.
If 𝑤1, … ,𝑤𝑚 is a linearly independent subset of Span({𝑣1, … , 𝑣𝑛}), then 𝑚 ≤ 𝑛

Corollary. Let 𝑉 be a vector space, that can be generated by a finite set of vectors.
That is, there exists a finite set 𝑆 ⊆ 𝑉 so that Span(𝑆) = 𝑉. Then any two bases
of 𝑉 have the same cardinality. We call this cardinality the dimension of 𝑉.

Theorem 6.1. Every vector space has a basis.

Lemma (Dimension formula). Let 𝑉 be a vector space and 𝑈,𝑊 subspaces thereof.
Then

dim(𝑈 + 𝑉) = dim(𝑈) + dim(𝑉 ) − dim(𝑈 ∩ 𝑉)

Lemma 6.2 (Basis completion lemma). Every linearly independent subset of a vec-
tor space can be extended to a basis. That is, if {𝑣1, … , 𝑣𝑘} is a set of linearly
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independent vectors in a vector space 𝑉, there exist vectors 𝑣𝑘+1, … , 𝑣𝑛 so that
{𝑣1, … , 𝑣𝑛} is a basis of 𝑉.

Corollary. Let 𝑉 be a (finite dimensional) vector space of dimension 𝑛 and 𝑈 a
sub vector space thereof. dim(𝑈) = dim(𝑉 ) if and only if 𝑈 = 𝑉.

Corollary. Let 𝑈 be a linear subspace of a finite dimensional vector space 𝑉. Then
dim(𝑈) ≤ dim(𝑉 ). Moreover,

• 𝑈 = 𝑉 if and only if dim(𝑈) = dim(𝑉 ).

• 𝑈 ⊊ 𝑉 if and only if dim(𝑈) < dim(𝑉 ).

In fact, these results give us an equivalent definition of what a basis is

Proposition 6.3. Let 𝑉 be a finite-dimensional vector space. We call a strictly
inclusion-increasing sequence 0 ⊊ 𝑈1 ⊊ 𝑈2 ⊆ ⋯ ⊊ 𝑈𝑘 ⊆ 𝑉 of linear subspaces 𝑈𝑖

a chain. The length of this chain is the index 𝑛. Then the supremum over the
lengths of all possible chains in 𝑉 is equal to dim(𝑉 ).

It is a nice exercise to prove this with the results we have gathered so far.
This definition is a little strange in the context of vector spaces, but is the most

natural way the concept of dimension is defined for many other objects

(i) Let 𝑋 be a topological space, we define its dimension dim(𝑋) to be the supremum
of the lengths of all possible chains ∅ ⊊ 𝑋1 ⊊ 𝑋2 ⊊ ⋯ ⊊ 𝑋𝑛 ⊆ 𝑋 of irreducible1

subspaces 𝑋𝑖 ⊆ 𝑋.

(ii) Let 𝑅 be a ring. We define the dimension dim(𝑅) to be the supremum of the
lengths of all possible chains 0 ⊊ 𝐼1 ⊊ 𝐼2 ⊊ ⋯ ⊊ 𝐼𝑛 ⊆ 𝑅 of prime ideals2 in 𝑅.

1A topological space is irreducible if it cannot be written as the union of two proper closed sets.
2We did not define this in this course, no worries.
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7

Linear maps

Definition (Linear maps, Homomorphisms). A map 𝑇∶ 𝑉 −→ 𝑊 of 𝑘-vector spaces
𝑉 ,𝑊 is said to be linear if it satisfies the additivity and homogeneity conditions. That
is,

• (additivity) for every two vectors 𝑣, 𝑣′ in 𝑉, we have that 𝑇(𝑣+𝑣′) = 𝑇(𝑣)+𝑇(𝑣′),
and

• (homogeneity) for any vector 𝑣 in 𝑉 and any scalar 𝜆 in 𝑘, we have 𝑇(𝜆𝑣) = 𝜆𝑇(𝑣).

The two conditions of additivity and homogeneity can be succinctly combined into one
condition:

• 𝑇 is linear if for all scalars 𝜆 in 𝑘 and vectors 𝑣, 𝑣′ in 𝑉 we have 𝑇(𝜆𝑣 + 𝑣′) =
𝜆𝑇(𝑣) + 𝑇(𝑣′)

We denote the set of all linear maps 𝑉 −→ 𝑊 by Hom𝑘(𝑉 ,𝑊). Here, Hom is short for
homomorphism, meaning to transform (morph) in a structure preserving (homo) way.

Lemma. Linear maps are uniquely characterised by their behaviour on bases. That
is, if ℬ is a basis of 𝑉 and 𝑇 , 𝑇 ′ ∶ 𝑉 −→ 𝑊 linear maps such that 𝑇(𝑏) = 𝑇 ′(𝑏) for all
𝑏 in ℬ, then 𝑇 = 𝑇 ′ on all of 𝑉.

Proof. Let 𝑣 be a vector in 𝑉. Then there exist (unique) coefficients 𝑣1, … , 𝑣𝑛 in 𝑘 and
unique 𝑏1, … , 𝑏𝑛 in ℬ so that 𝑣 = 𝑣1𝑏1 +⋯+ 𝑣𝑛𝑏𝑛. Then

𝑇(𝑣) = 𝑇(𝑣1𝑏1 +⋯+ 𝑣𝑛𝑏𝑛)

= 𝑣1𝑇(𝑏1) +⋯+ 𝑣𝑛𝑇(𝑏𝑛)

= 𝑣1𝑇 ′(𝑏1) +⋯+ 𝑣𝑛𝑇 ′(𝑏𝑛)

= 𝑇 ′(𝑣1𝑏1 +⋯+ 𝑣𝑛𝑏𝑛)

= 𝑇 ′(𝑣).

Since the choice of 𝑣 was arbitrary, we have shown that for all 𝑣 in 𝑉, 𝑇(𝑣) = 𝑇 ′(𝑣).
Hence 𝑇 = 𝑇 ′.

Remark. This is a profoundly important result. It underpins the notion that linear
maps preserve the structure of a vector space.
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Definition (Kernel). The kernel ker(𝑇 ) of a linear map 𝑇∶ 𝑉 −→ 𝑊 is the preimage of
0𝑊 under 𝑇. That is

ker(𝑇 ) = 𝑇−1({0𝑊}) = {𝑣 ∈ 𝑉 ∣ 𝑇 (𝑣) = 0𝑊} ⊆ 𝑉 .

Lemma 7.1. The kernel and image of a linear map 𝑇∶ 𝑉 −→ 𝑊 are subspaces
of 𝑉 and 𝑊 respectively. In particular, if ℬ is a basis of 𝑉, then im(𝑇 ) =
Span({𝑇 (𝑏) ∣ 𝑏 ∈ ℬ}).

Proof. First we will show that the kernel is a subspace. By the homogeneity property of
linearity, we know that for any vector 𝑣 in 𝑉 and 𝜆 in 𝑘, we have that 𝑇(𝜆𝑣) = 𝜆𝑇(𝑣). In
particular this is true when 𝜆 = 0 and we get 𝑇(0𝑉) = 𝑇(0⋅𝑣) = 0⋅𝑇 (𝑣) = 0𝑊. Hence 0𝑉
lies in ker(𝑇 ). Now let 𝑣, 𝑣′ lie in ker(𝑇 ), then 𝑇(𝑣+𝑣′) = 𝑇(𝑣)+𝑇(𝑣′) = 0𝑉+0𝑉 = 0𝑉,
hence 𝑣 + 𝑣′ lies in ker(𝑇 ). Finally, we see that if 𝑣 is in ker(𝑇 ), then 𝜆𝑣 also lies in
ker(𝑇 ) for every 𝜆 in 𝑘. Indeed, 𝑇(𝜆𝑣) = 𝜆𝑇(𝑣) = 𝜆 ⋅ 0𝑉 = 0𝑉.

Now we will show that the image is a subspace of 𝑊. It suffices to show that for a
choice of basis ℬ, we have that im(𝑇 ) = Span({𝑇 (𝑏) ∣ 𝑏 ∈ ℬ}), since Span(⋅) is always
a vector (sub)space by definition (Proposition 4). To that end, let 𝑤 lie in im(𝑇 ).
Then there exists some 𝑣 in 𝑉 such that 𝑇(𝑣) = 𝑤. However, since ℬ is a basis of
𝑉, we can write 𝑣 = 𝑣1𝑏1 + ⋯𝑣𝑘𝑏𝑘 for unique coefficients 𝑣𝑖 in 𝑘 and vectors 𝑏𝑖 in
ℬ. Then 𝑇(𝑣) = 𝑇(𝑣1𝑏1 + ⋯𝑣𝑘𝑏𝑘) = 𝑣1𝑇(𝑏1) + ⋯ + 𝑣𝑘𝑇(𝑏𝑘). This clearly lies in
Span({𝑇 (𝑏) ∣ 𝑏 ∈ ℬ}) and we have shown im(𝑇 ) ⊆ Span({𝑇 (𝑏) ∣ 𝑏 ∈ ℬ}). Conversely,
let 𝑤 lie in Span({𝑇 (𝑏) ∣ 𝑏 ∈ ℬ}). Then 𝑤 = 𝑤1𝑇(𝑐1) +⋯+𝑤𝑘𝑇(𝑐𝑘) for a some 𝑐𝑖 in
ℬ and scalars 𝑤𝑖 in 𝑘. By linearity of 𝑇, we see that 𝑤 = 𝑇(𝑤1𝑐1 +⋯+ 𝑤𝑘𝑐𝑘). Thus
𝑤 lies in im(𝑇 ) and we have shown Span({𝑇 (𝑏) ∣ 𝑏 ∈ ℬ}) ⊆ im(𝑇 ).

Lemma. A linear map is injective if and only if it has a trivial kernel. That is,
the map 𝑇∶ 𝑉 −→ 𝑊 is injective if and only if ker(𝑇 ) = {0𝑉}.

Proof. Let 𝑇∶ 𝑉 −→ 𝑊 be an injective linear map and let 𝑣 lie in its kernel. Then
𝑇(𝑣) = 𝑇(0𝑉) = 0𝑉, and 𝑣  = 0𝑉 by injectivity. Therefore the only element in the
kernel of 𝑇 is 0𝑉.

Conversely, suppose ker(𝑇 ) = {0𝑉}. If 𝑇(𝑣) = 𝑇(𝑤), then by linearity 0 = 𝑇(𝑤) −
𝑇(𝑣) = 𝑇(𝑤 − 𝑣). Hence 𝑤 − 𝑣 lies in ker(𝑇 ) = {0𝑉}, so 𝑤 − 𝑣 = 0 and 𝑤 = 𝑣. We
conclude that 𝑇 is injective.

Lemma 7.2. Let 𝑉 ,𝑊 be 𝑘-vector spaces of arbitrary dimension and 𝑇∶ 𝑉 −→ 𝑊
linear. Then

1. If 𝑇 is injective and 𝑆 ⊆ 𝑉 linearly independent, then 𝑇(𝑆) = {𝑇(𝑠) ∣ 𝑠 ∈ 𝑆}
is linearly independent.
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2. If 𝑇 is surjective and 𝑆 ⊆ 𝑉 spans 𝑉 (Span(𝑆) = 𝑉), then Span(𝑇 (𝑆)) =
Span({𝑇 (𝑠) ∣ 𝑠 ∈ 𝑆}) = 𝑊.

We can succinctly summarise this result as follows

1. Injective linear maps map linearly independent sets to linearly independent
sets.

2. Surjective linear maps map spanning sets to spanning sets.

Proof. Let 𝑇∶ 𝑉 −→ 𝑊 be an injective linear map and 𝑆 ⊆ 𝑉 linearly independent.
Consider a trivial linear combination 0𝑊 = 𝜆1𝑇(𝑠𝑖) + ⋯ + 𝜆𝑘𝑇(𝑠𝑘) of 𝑘 elements in
𝑇(𝑆) = {𝑇(𝑠) ∣ 𝑠 ∈ 𝑆}. Then 0𝑊 = 𝑇(𝜆1𝑠1+⋯+𝜆𝑘𝑠𝑘), so 𝜆1𝑠1+⋯+𝜆𝑘𝑠𝑘 lies in the
kernel of 𝑇. Since 𝑇 is injective, ker(𝑇 ) = {0𝑉} and 0𝑉 = 𝜆1𝑠1+⋯+𝜆𝑘𝑠𝑘. However, by
assumption 𝑆 is linearly independent, so 𝜆1 = … = 𝜆𝑘 = 0. We can conclude that 𝑇(𝑆)
is linearly independent, since every trivial linear combination of vectors was shown to
have coefficients 𝜆1 = … = 𝜆𝑘 = 0.

The second statement with surjective 𝑇 is an immediate consequence of Lemma 7.1.

Definition (Rank, Nullity). The dimension of the image of a linear map 𝑇∶ 𝑉 −→ 𝑊 is
called the rank of 𝑇 and denoted Rank(𝑇 ) = dim(im(𝑇 )). The dimension of the kernel
of a linear map is called the nullity of 𝑇 and denoted dim(ker(𝑇 )) = Null(𝑇 ).

Lemma (Rangsatz). Let 𝑇∶ 𝑉 −→ 𝑊 be linear and 𝑉 finite-dimensional then

Rank(𝑇 ) + Null(𝑇 ) = dim(𝑉 ).

Proof. Let dim(𝑉 ) = 𝑛. We know that ker(𝑇 ) is a (finite-dimensional) subspace of
𝑉 (Lemma 7.1). Therefore it has a dimension 𝑘 and a basis 𝑏1, … , 𝑏𝑘 (because it is a
vector space, Lemma 6.1). By the basis completion lemma (Lemma 6.2) we can extend
𝑏1, … , 𝑏𝑘 to a basis 𝑏1, … , 𝑏𝑘, 𝑏𝑘+1, … , 𝑏𝑛 of 𝑉. Now, by Lemma 7.1

Rank(𝑇 ) def.= dim(im(𝑇 )) = dim(Span({𝑇 (𝑏1), … , 𝑇 (𝑏𝑘), 𝑇 (𝑏𝑘+1), … , 𝑇 (𝑏𝑛)})).

Since 𝑏1, … , 𝑏𝑘 span the kernel, 𝑇(𝑏1) = … = 𝑇(𝑏𝑘) = 0 and

Rank(𝑇 ) = dim(Span({𝑇 (𝑏𝑘+1), … , 𝑇 (𝑏𝑛)})).

However, by Lemma 7.2, we know that {𝑇 (𝑏𝑘+1), … , 𝑇 (𝑏𝑛)} is linearly independent.
We conclude that Rank(𝑇 ) + Null(𝑇 ) = (𝑛 − 𝑘) + 𝑘 = 𝑛 = dim(𝑉 ).

Corollary 7.3. Let 𝑇∶ 𝑉 −→ 𝑊 be injective linear. Then

dim(𝑉 ) = Rank(𝑇 ) ≤ dim(𝑊).
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Corollary 7.4. Let 𝑇∶ 𝑉 −→ 𝑊 be surjective linear. Then

dim(𝑉 ) ≥ Rank(𝑇 ) = dim(𝑊).

Corollary 7.5. If dim(𝑉 ) = dim(𝑊) and 𝑇∶ 𝑉 −→ 𝑊 linear. Then 𝑇 is injective if
and only if it is surjective.

Proof. If 𝑇 is surjective, then Rank(𝑇 ) = dim(𝑊) = dim(𝑉 ). So Null(𝑇 ) = 0. This
can only be the case if ker(𝑇 ) = {0}. Hence 𝑇 is injective.

If 𝑇 is injective, then Null(𝑇 ) = 0 and Rank(𝑇 ) = dim(𝑉 ) = dim(𝑊). Therefore
im(𝑇 ) = 𝑊 and 𝑇 is surjective.
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8

Row Echelon Form

In this section, we highlight the value of the row-echelon form of a matrix.

Lemma. Left multiplication by a matrix is a linear map. That is, if 𝑀 is a 𝑛×𝑚
matrix over 𝑘, then the map 𝐿𝑀 ∶ ℝ𝑚 −→ ℝ𝑛; 𝑥 ↦ 𝑀𝑥 is linear.

Lemma. The elements of the kernel of 𝐿𝑀 are exactly the solutions to the system
of equations 𝑀𝑥 = 0.

Lemma 8.1 (Matrix Product Formula). Let 𝐴 be a 𝑚×𝑛 matrix with entries in 𝑘,
and 𝐵 a 𝑛 × 𝑘 matrix with entries in 𝑘. The product 𝐴𝐵 is a 𝑚 × 𝑘 matrix. We
have the following formula for the (𝑖, 𝑗)-th entry of 𝐴𝐵

(𝐴𝐵)𝑖,𝑗 =
𝑛
∑
𝑙=1

𝐴𝑖,𝑙𝐵𝑙,𝑗

In particular, if 𝐴 is a 𝑚 × 𝑛 matrix, and 𝐵 = 𝑣 an 𝑛-row column vector (𝑛 × 1
matrix), then 𝐴𝑣 is a 𝑚-row column vector (𝑚× 1 matrix) whereby the 𝑖-th entry
is

(𝐴𝑣)𝑖 =
𝑛
∑
𝑙=1

𝐴𝑖,𝑙𝑣𝑙

Lemma 8.2. The pivot elements of a matrix 𝑀 in row-echelon form form a basis
of the image of 𝐿𝑀.

Proof. If 𝑀 is a 𝑛 × 𝑚 matrix, we know that 𝐿𝑀 ∶ ℝ𝑚 −→ ℝ𝑛; 𝑥 ↦ 𝑀𝑥 is a linear
map. If 𝑒𝑖 is the 𝑖-th standard basis vector of 𝑅𝑚, then 𝐿𝑚(𝑒𝑖) = 𝑀𝑒𝑖 = 𝑀 (𝑖) is the
𝑖-th column of 𝑀. Indeed, writing out the product using the matrix product formula
(Lemma 8.1) we obtain

(𝑀𝑒𝑖)𝑗 =
𝑚
∑
𝑙=1

𝑀𝑗,𝑙(𝑒𝑖)𝑙 = 𝑀𝑗,𝑖 so 𝑀𝑒𝑖 =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

𝑀1,𝑖

⋮
𝑀𝑗,𝑖

⋮
𝑀𝑛,𝑖

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= 𝑀 (𝑖)

Since the 𝑒𝑖 generate ℝ𝑚, we know that 𝑀𝑒𝑖 generate im(𝑇 ) (Lemma 7.2). Therefore,
any linearly independent subset of {𝑀𝑒𝑖 ∣ 𝑒𝑖} is a basis of the image of 𝐿𝑀. From the
row-echelon form, it is clear that the pivot-columns are linearly independent. Therefore,
the pivot columns of 𝑀 generate the image of 𝐿𝑀.
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9

The quotient space

9.1 Equivalence relations

We will also be talking a lot about how different elements can be represented by
different objects. The most elementary example of this is seen in the rational numbers.
Both 1/2 and 2/4 represent the same quantity in ℚ.

In fact, this can be generalised. Given any set 𝑋 and an equivalence relation ∼ we
can define 𝑋/∼ = {[𝑥]∼ ∣ 𝑥 ∈ 𝑋}. This is a new set where any two elements [𝑥]∼, [𝑦]∼
are said to be the same if (and only if) 𝑥 ∼ 𝑦. We call the elements [𝑥]∼ in 𝑋/∼
(equivalence) classes of 𝑋/∼. So when [𝑥]∼ = [𝑦]∼, we say that 𝑥, 𝑦 represent the
same class in 𝑋/∼. For simpler notation we often drop the ∼ and just write [𝑥] for
[𝑥]∼.

As an example, take 𝑋 = ℤ, set 𝑛 to be some fixed integer and define 𝑥 ∼ 𝑦 if and
only if 𝑛 divides (𝑥 − 𝑦). We write this as 𝑛 ∣ (𝑥 − 𝑦). This is an equivalence relation
(check). For example [𝑎] = [𝑎 + 𝑛] for all 𝑎 in ℤ because 𝑎 − (𝑎 + 𝑛) = −𝑛 is always
divisible by 𝑛. So we would say that [𝑎] and [𝑎 + 𝑛] represent the same class in 𝑋/∼.
We can now write down all the classes of 𝑋/∼ as follows

𝑋/∼ = {[𝑚] ∣ 𝑚 ∈ ℤ} = {[0], [1], [2], … , [𝑛 − 1]}

We know that 𝑋/∼ really only has these 𝑛 elements because if we choose any 𝑘 > 𝑛
then there exists some 𝑙 in ℤ so that 0 ≤ 𝑘′ = 𝑘 − 𝑙𝑛 ≤ (𝑛 − 1) and then [𝑘] = [𝑘′] is in
our set above. Of course this is not the only way to write down all the classes in 𝑋/∼.
It is just as correct to say

𝑋/∼ = {[1], [2], … , [𝑛 − 1], [𝑛]}
or= {[𝑛 + 1], [2 + 𝑛],… , [2𝑛 − 1], [2𝑛]}
or= {[−3], [−2], [−1], [0], , … , [𝑛 − 5], [𝑛 − 4]}

What is special about our 𝑋 = ℤ example is that ℤ also has a group structure:
addition. This carries over to 𝑋/∼, or, in more formal language, 𝑋/∼ inherits the
group structure of ℤ.

Before we show this, we go back to our example of ℚ. Here the equivalence relation
is given by 𝑎/𝑏 ∼ 𝑎′/𝑏′ ⟺ 𝑎𝑏′ − 𝑎′𝑏 = 0. If we define any binary operation on ℚ we
must ensure it does not depend on the representatives. For example, suppose we try
to define 𝑎/𝑏 ⊕ 𝑎′/𝑏′ = 𝑎 + 𝑎′. This is not well-defined. Indeed, take 1/2 and 2/4 as
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before. Then

1/2 ⊕ 1/2 = 1 + 1 = 2 but 2/4 ⊕ 2/4 = 2 + 2 = 4.

This is bad because 1/2 and 2/4 are supposed to be the same element in ℚ so adding
them to themselves should yield the same result. Using the correct definition 𝑎/𝑏 +
𝑎′/𝑏′ = (𝑎𝑏′+𝑎′𝑏)/𝑏𝑏′ yields an operation that does not depend on the representatives.
Indeed, suppose 𝑐/𝑑 = 𝑎/𝑏 and 𝑐 ′/𝑑 ′ = 𝑎′/𝑏′, then by definition 𝑐𝑏 − 𝑎𝑑 = 0 and
𝑐 ′𝑏′ − 𝑎′𝑑 ′ = 0. Calculating

𝑐
𝑑
+

𝑐 ′

𝑑 ′
=

𝑐𝑑 ′ + 𝑑𝑐 ′

𝑑𝑑 ′
=

𝑏𝑏′𝑐𝑑 ′ + 𝑏𝑏′𝑑𝑐 ′

𝑏𝑏′𝑑𝑑 ′
=

𝑏′𝑑 ′𝑎𝑑 + 𝑏𝑑𝑎′𝑑 ′

𝑏𝑏′𝑑𝑑 ′
=

𝑏′𝑎 + 𝑏𝑎′

𝑏𝑏′
=

𝑎
𝑏
+

𝑎′

𝑏′

we see that the addition is well-defined.
Returning to our ℤ = 𝑋 example we define define [𝑎] ⊕ [𝑏] = [𝑎 + 𝑏]. To verify that

this is well-defined, we take two different representatives [𝑎′], [𝑏′] of [𝑎], [𝑏] and calculate

[𝑎] ⊕ [𝑏] = [𝑎 + 𝑏] = [𝑎′ + 𝑏′] = [𝑎′] ⊕ [𝑏′].

Here, [𝑎 + 𝑏] = [𝑎′ + 𝑏′] because [𝑎] = [𝑎′] and [𝑏] = [𝑏′], So we know 𝑛 ∣ (𝑎 − 𝑎′) and
𝑛 ∣ (𝑏 − 𝑏′) and thus 𝑛 ∣ (𝑎 − 𝑎′) + (𝑏 − 𝑏′) = (𝑎 + 𝑏) − (𝑎′ + 𝑏′).

The attentive reader will have noticed that this example is exactly that of modular
arithmetic. Here we often use the notation “𝑥 (mod 𝑛)” to mean the class of 𝑥 modulo
𝑛 in ℤ.

I would recommend really understanding this example thoroughly before moving
on. It might also help to see the general construction of a quotient of commutative
group.

Construction 9.1 (Quotient group). Let (𝐺,+, 0) be a commutative group and 𝐻
a subgroup. That is, 0 is in 𝐻; for all ℎ, ℎ ′ in 𝐻, we have that ℎ +ℎ ′ is again in 𝐻;
and that for every element ℎ in 𝐻, −ℎ is also in 𝐻. Define the equivalence relation
𝑔 ∼ 𝑔 ′ ⟺ (𝑔 − 𝑔 ′) ∈ 𝐻, and write as a set 𝐺/𝐻 = {[𝑔] ∣ 𝑔 ∈ 𝐺}. The inherited
group structure on 𝐺/𝐻 is defined by [𝑔] ⊕ [𝑔 ′] = [𝑔 + 𝑔 ′].

If one wants to generalise this to generic (non-commutative) groups, one needs to
introduce the notion of a normal subgroup. After this, the construction is exactly the
same.

9.2 Construction of the quotient space

We have spoken about algebraic and geometric aspects of vector spaces. Initially we
defined a vector space as an abstract algebraic object, but have seen that with the
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introduction of the scalar product that (inner product) vector spaces can encapsulate
geometric notions.

For now, forget all geometric notions and go back to the plain algebraic definition
of a vector space: a vector space 𝑉 over a field 𝑘 is a tuple (𝑉 ,+, 0, ⋅) so that (𝑉 ,+, 0)
is a commutative group together with a scalar multiplication ⋅ which distributes with
+.

Now we can construct the quotient of a vector space and a linear subspace.

Construction 9.2 (Quotient vector space). Let (𝑉 ,+, 0, ⋅) be a vector space and 𝑈
a linear subspace of 𝑉.
The set. For every vector 𝑣 in 𝑉 we can write down the symbol [𝑣]𝑈. We call

this a symbol because at the moment it is only a notation and has no mathematical
meaning. We could also write 𝑄𝒰

𝑣 for every 𝑣 in 𝑉 instead. We call the set of all
of these symbols

𝑉/𝑈 = {[𝑣]𝑈 ∣ 𝑣 ∈ 𝑉} .

Now we define the equivalence relation [𝑣]𝑈 ∼ [𝑤]𝑈 ⟺ (𝑣 − 𝑤) ∈ 𝑈. This is
reflexive, since 𝑣 − 𝑣 = 0 lies in every linear subspace. It is symmetric because
every linear subspace is closed under negation (taking the additive inverse). That
is, if 𝑣 − 𝑤 is in 𝑈, then 𝑤 − 𝑣 = −(𝑣 − 𝑤) also lies in 𝑈. Finally, it is transitive,
because if 𝑣 − 𝑤 and 𝑤 − 𝑧 lie in 𝑈, then 𝑣 − 𝑧 = (𝑣 − 𝑤) + (𝑤 − 𝑧) lies in 𝑈.
The additive group structure. Now we an addition on 𝑉/𝑈 as follows

[𝑣]𝑈 ⊕ [𝑣′]𝑈
def.= [𝑣 + 𝑣′]𝑈. This is well-defined. Indeed, take two representatives

[𝑤]𝑈, [𝑤
′]𝑈 of [𝑣]𝑈, [𝑣

′]𝑈 respectively and add

[𝑣]𝑈 ⊕ [𝑣′]𝑈 = [𝑣 + 𝑣′]𝑈 = [𝑤 + 𝑤 ′]𝑈 = [𝑤]𝑈 ⊕ [𝑤 ′]𝑈.

(As in the example of modular arithmetic) we see that [𝑣 + 𝑣′]𝑈 = [𝑤 + 𝑤 ′]𝑈 because
(𝑣 + 𝑣′) − (𝑤 + 𝑤 ′) = (𝑣 − 𝑤) + (𝑣′ −𝑤 ′) lies in 𝑈.

We claim that [0]𝑈 is the neutral element of this group with respect to ⊕. Indeed,
for all [𝑣]𝑈 in 𝑉/𝑈 we have [𝑣]𝑈 + [0]𝑈 = [𝑣 + 0]𝑈 = [𝑣]𝑈. Every element also
has an inverse with respect to ⊕. For all [𝑣]𝑈 in 𝑉/𝑈 we take [−𝑣]𝑈 and add
[𝑣]𝑈 + [−𝑣]𝑈 = [𝑣 − 𝑣]𝑈 = [0]𝑈.

So we have a group (𝑉/𝑈,⊕, [0]𝑈). To obtain a vector space be must also define
a scalar multiplication. We do this in the obvious way. For every 𝜆 in 𝑘 and [𝑣]𝑈
in 𝑉/𝑈, we define 𝜆 ⊙ [𝑣]𝑈 = [𝜆𝑣]𝑈. We must now ensure that this distributes with
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⊕ in the correct way. Let [𝑣]𝑈, [𝑤]𝑈 lie in 𝑉/𝑈 and 𝜆, 𝜇 in 𝑘, then

(𝜆 + 𝜇) ⊙ [𝑣]𝑈 = [(𝜆 + 𝜇) ⋅ 𝑣]𝑈
= [𝜆 ⋅ 𝑣 + 𝜇 ⋅ 𝑣]𝑈
= [𝜆 ⋅ 𝑣]𝑈 ⊕ [𝜇 ⋅ 𝑣]𝑈
= [𝜆 ⋅ 𝑣]𝑈 ⊕ [𝜇 ⋅ 𝑣]𝑈
= 𝜆 ⊙ [𝑣]𝑈 ⊕ 𝜇 ⊙ [𝑣]𝑈

moreover

𝜆 ⊙ ([𝑣]𝑈 ⊕ [𝑤]𝑈) = 𝜆 ⊙ [𝑣 + 𝑤]𝑈
= [𝜆 ⋅ (𝑣 + 𝑤)]𝑈
= [𝜆 ⋅ 𝑣 + 𝜆 ⋅ 𝑤)]𝑈
= [𝜆 ⋅ 𝑣]𝑈 ⊕ [𝜆 ⋅ 𝑤]𝑈
= 𝜆 ⊙ [𝑣]𝑈 ⊕ 𝜆 ⊙ [𝑤]𝑈.

In other words, all of the properties are simply inherited from 𝑉.
So we conclude that (𝑉/𝑈,⊕, [0]𝑈, ⊙) forms a vector space. For notational sim-

plicity we will only write (𝑉/𝑈,+, 0, ⋅). When the subspace 𝑈 is clear, we may write
𝑣 instead of [𝑣]𝑈.

Finally, we note the map 𝑉 −→ 𝑉/𝑈; 𝑣 ↦ [𝑣]𝑈 is called the quotient map. It
is linear, surjective and usually denoted by 𝜋𝑈 or 𝜋 when the subspace is clear.
Notably, the kernel of 𝜋 is exactly 𝑈. Indeed, suppose 𝜋(𝑣) = [0]𝑈 then 𝑣 − 0 = 𝑣
lies in 𝑈, so ker(𝜋) ⊆ 𝑈. Conversely, for every element in 𝑢 in 𝑈, the element
𝑢 − 0 = 𝑢 is also in 𝑈 (no surprise), therefore 𝜋(𝑢) = [𝑢]𝑈 = [0]𝑈 and we conclude
that 𝑈 ⊆ ker(𝜋).

Remark (A remark on notation). Another popular notation for [𝑣]𝑈 is 𝑣 + 𝑈. This is
inspired by the fact that 𝜋−1(𝑣) = {𝑣 + 𝑢 ∣ 𝑢 ∈ 𝑈} notation= 𝑣 + 𝑈.

Altogether, we have the following notations for elements in 𝑉/𝑈

𝑣 = 𝜋𝑈(𝑣) = 𝜋(𝑣) = [𝑣]𝑈 = [𝑣] = 𝑣 + 𝑈

I will mostly use 𝑣 or 𝜋(𝑣) depending on the context, and use the subscript where there
is ambiguity.

There are two trivial examples of quotients. Firstly, quotienting by the zero-space
{0}. Then we claim that 𝑉 ≅ 𝑉/{0} via 𝜋∶ 𝑣 ↦ 𝑣. We know that 𝜋 is surjective. So
let us verify injectivity. Suppose 𝑣 = 𝑤 then 𝑣 − 𝑤 is in {0} so 𝑣 = 𝑤. The second
trivial example is quotienting by the entire space. We claim that 𝑉/𝑉 ≅ {0}. Here it is
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enough to count the number of elements of 𝑉/𝑉. If it only has one element, it must be
0 because 𝑉/𝑈 is always a vector space. Take two elements 𝑣,𝑤 in 𝑉/𝑉. Then 𝑣 = 𝑤
because 𝑣 − 𝑤 is in 𝑉.

Lemma 9.3 (Bases of quotient spaces (Exercise 5.4.9(a))). Let 𝑉 be a 𝑛-dimensional
vector space and 𝑈 a subspace. Let 𝒰 = (𝑏1, … , 𝑏𝑘) be a basis of 𝑈 and ℬ = (𝑏1, … ,
𝑏𝑘, 𝑏𝑘+1, … , 𝑏𝑛) an extension of this basis to a basis of 𝑉. Then𝒬 = ([𝑏𝑘+1]𝑈, … , [𝑏𝑛]𝑈)
is a basis of the quotient 𝑉/𝑈.

Proof. First we note that [𝑏1]𝑈 = ⋯ = [𝑏𝑘]𝑈 = [0]𝑈 since 𝑏𝑖 are in 𝑈 for 𝑖 = 1,… , 𝑘.
Now let [𝑣]𝑈 be an element of the quotient 𝑉/𝑈. Since ℬ is a basis, we may write

𝑣 = 𝛼1𝑏1 +⋯+ 𝛼𝑛𝑏𝑛 for some scalars 𝛼𝑖 in 𝑘. Then

[𝑣]𝑈 = [𝛼1𝑏1 +⋯+ 𝛼𝑛𝑏𝑛]𝑈
= 𝛼1[𝑏1]𝑈 +⋯+ 𝛼𝑛[𝑏𝑛]𝑈
= 𝛼1[𝑏1]𝑈 +⋯+ 𝛼𝑘[𝑏𝑘]𝑈⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=[0]𝑈

+ 𝛼𝑘+1[𝑏𝑘+1]𝑈 +⋯+ 𝛼𝑛[𝑏𝑛]𝑈

= 𝛼𝑘+1[𝑏𝑘+1]𝑈 +⋯+ 𝛼𝑛[𝑏𝑛]𝑈

therefore 𝒬 surely spans 𝑉/𝑈.
Now suppose

[0]𝑈 = 𝛽𝑘+1[𝑏𝑘+1]𝑈 +⋯+ 𝛽𝑛[𝑏𝑛]𝑈 = [𝛽𝑘+1𝑏𝑘+1 +⋯+ 𝛽𝑛𝑏𝑛]𝑈
for some scalars 𝛽𝑖 in 𝑘. Then 𝑢 = 𝛽𝑘+1𝑏𝑘+1 +⋯+ 𝛽𝑛𝑏𝑛 lies in 𝑈. This can only be if
𝑢 = 0 since 𝑏𝑘+1, … , 𝑏𝑛 form a basis of the complement 𝑈⟂ of 𝑈. Another way of seeing
this, is that 𝑢 can be written as 𝑢 = 𝛽1𝑏1 +⋯+ 𝛽𝑘𝑏𝑘. Then

0 = 𝛽1𝑏1 +⋯+ 𝛽𝑘𝑏𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝑢

− (𝛽𝑘+1𝑏𝑘+1 +⋯+ 𝛽𝑛𝑏𝑛)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
also =𝑢

and since the 𝑏𝑖 are linearly independent, all 𝛽𝑖 = 0.

Example 9.4 (Geometry of the quotient space). We can now think about the ge-
ometry of a quotient space. The common go-to example here is to consider ℝ2

and a 1-dimensional subspace 𝑈. This 1-dimensional subspace geometrically is a
line through the origin. If we now form the quotient ℝ2/𝑈 and take an element
𝑣 from there. We note that by definition all representatives of 𝑣 are vectors 𝑤 in
ℝ2 so that 𝑤 − 𝑣 is in 𝑈. In other words, there exists a 𝑢 in 𝑈 so that 𝑤 = 𝑢 + 𝑣.
Consequently the set of representatives for 𝑣 are all the vectors in the line (not
necessarily through the origin) parallel to 𝑈 that goes through 𝑣.

There are three further interesting results on quotient spaces.
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Lemma 9.5. There is a bijection between the linear subspaces of 𝑉 that contain 𝑈
and the linear subspaces of 𝑉/𝑈. This bijection is induced by 𝜋. That is

𝛱∶ {𝑊 ⊆ 𝑉 a linear subspace ∣ 𝑈 ⊆ 𝑊 ⊆ 𝑉} ∼−→ {𝑊 ⊆ 𝑉/𝑈 a linear subspace}

𝑊 ↦ 𝜋(𝑊)

is a bijection

Proof. Note that these sets are not vector spaces, so we firstly did not say that they
are isomorphic, and secondly we did not claim that 𝛱 is linear — although 𝜋 itself is
linear.

Also note that 𝛱(𝑊) = 𝜋(𝑊) for every subspace 𝑊 of 𝑉 that contains 𝑈. This is a
syntactic distinction because 𝜋 is a map 𝑉 ↦ 𝑉/𝑈 and 𝛱 is as above.

We must only verify bijectivity. Suppose 𝜋(𝑊) = 𝜋(𝑊 ′) for two subspaces 𝑊 of 𝑉
and let 𝑤 lie in 𝑊. Then there exists a 𝑤 ′ in 𝑊 ′ so that 𝜋(𝑤) = 𝜋(𝑤 ′). In other words
there exists a 𝑢 in 𝑈 so that 𝑤 −𝑤 ′ = 𝑢. Since 𝑈 ⊆ 𝑊 ′ we see that 𝑤 = 𝑤 ′ + 𝑢 lies in
𝑊 ′ and we have shown that 𝑊 ⊆ 𝑊 ′. By symmetry we see that 𝑊 ′ ⊆ 𝑊 and 𝑊 = 𝑊 ′

so 𝛱 is injective. Conversely, suppose 𝑊 is a subspace of 𝑉/𝑈, then 𝜋−1(𝑊) is also a
subspace of 𝑉 (the preimage of a linear subspace under a linear map is again a linear
subspace). Further, since 0 lies in 𝑊 we see that 𝑈 ⊆ 𝜋−1(𝑊). Therefore there exists
a linear subspace 𝜋−1(𝑊) ⊆ 𝑉 which contains 𝑈 and is mapped to 𝑊 under 𝜋.

We conclude that 𝛱 is indeed bijective.

Corollary 9.6 (of the proof.). Let 𝑈 be a linear subspace of 𝑉 and 𝑊,𝑊 ′ linear
subspaces that both contain 𝑈. Then 𝑊 ⊆ 𝑊 ′ if and only if 𝜋𝑈(𝑊) ⊆ 𝜋𝑈(𝑊 ′).

Proof. That 𝜋 is inclusion preserving is clear. This is the direction 𝑊 ⊆ 𝑊 ′ implies
𝜋𝑈(𝑊) ⊆ 𝜋𝑈(𝑊 ′). This is true of all maps. The converse was seen in the proof. Namely
that when 𝜋𝑈(𝑊) ⊆ 𝜋𝑈(𝑊 ′) we know that for all 𝑤 in 𝑊, there exists a 𝑢 in 𝑈 so that
𝑤 = 𝑤 ′ + 𝑢 and since 𝑈 ⊆ 𝑊 ′ we see that 𝑤 lies in 𝑊 ′.

Theorem 9.7 (Isomorphism theorem of vector spaces). Let 𝑓 ∶ 𝑉 −→ 𝑊 be a linear
map. Then

𝑓 ∶ 𝑉/ker(𝑓)
∼−→ im(𝑓); 𝑣 ↦ 𝑓(𝑣)

is a linear isomorphism.

This theorem is used everywhere in algebra. The idea behind both the statement
and the proof can be thought of in two steps. First you restrict 𝑓 ∶ 𝑉 −→ 𝑊 to the image,
̃𝑓 ∶ 𝑉 −→ im(𝑓). This map is clearly surjective by construction. If we now also quotient
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out the kernel 𝑓 ∶ 𝑉/ker(𝑓) −→ im(𝑓), we are removing any non-trivial vectors which
could be sent to 0, making the map injective.

Proof. First we note that ker(𝑓) is always a linear subspace, so 𝑉/ker(𝑓) is a well-
defined object.

Secondly we must verify that this is a well-defined map. Indeed, suppose 𝑣,𝑤 are
two representatives of the same class in 𝑉/ker(𝑓), that is 𝑣 = 𝑤. Then 𝑓(𝑣) − 𝑓(𝑤) =
𝑓(𝑣 −𝑤) = 0, since 𝑣 −𝑤 is in ker(𝑓) because they represent the same class. Therefore
𝑓(𝑤) = 𝑓(𝑤) = 𝑓(𝑣) = 𝑓(𝑣).

Thirdly, we must check that 𝑓 is linear. Indeed, for all 𝑣,𝑤 in 𝑉 and 𝜆, 𝜇 in 𝑘 we
have 𝑓(𝜆𝑣 + 𝜇𝑤) = 𝑓(𝜆𝑣 + 𝜇𝑤) = 𝜆𝑓(𝑣) + 𝜇𝑓(𝑤) = 𝜆𝑓(𝑣) + 𝜇𝑓(𝑤).

Finally, we must verify that 𝑓 is bijective. It is clearly surjective: if 𝑧 is in im(𝑓),
then there exists a 𝑣 in 𝑉 so that 𝑓(𝑣) = 𝑧, therefore 𝑓(𝑣) = 𝑓(𝑣) = 𝑧. For injectivity,
suppose 𝑓(𝑣) = 𝑓(𝑤). Then 𝑓(𝑣) − 𝑓(𝑤) = 0 so 𝑣 − 𝑤 is in ker(𝑓) and 𝑣 = 𝑤.

Finally, we have the final interesting result on quotient spaces. Namely

Lemma 9.8. Let 𝑉 be a finite dimensional vector space. Let 𝑈 be a linear subspace.
Then

𝜋|𝑈⊥ ∶ 𝑈⊥ ∼−→ 𝑉/𝑈; 𝑣⊥ ↦ 𝜋(𝑣⊥) = 𝑣⊥

is an isomorphism. Equivalently, dim (𝑉/𝑈) = dim(𝑉 ) − dim(𝑈).

Note that 𝑈⊥ has nothing to do with orthogonality in this case, it is simply the linear
complement of 𝑈.

Direct proof. This map is a restriction of 𝜋∶ 𝑉 −→ 𝑉/𝑈 to 𝜋|𝑈⊥ ∶ 𝑈⊥ −→ 𝑉/𝑈. Therefore
we know that it is linear. We simply prove that this map is bijective.

For injectivity, suppose 𝜋|𝑈⊥(𝑣) = 𝜋|𝑈⊥(𝑣′), then 𝑣 − 𝑣′ lies in 𝑈. However, since
𝑣, 𝑣′ also lie in 𝑈⊥ we see that 𝑣−𝑣′ is also in 𝑈⊥ and 𝑣−𝑣′ = 0 because 𝑈 ∩𝑈⊥ = {0}.
So 𝑣 = 𝑣′ and 𝜋|𝑈⊥ is injective. For surjectivity, recall that 𝜋 is surjective. So for every
𝑣 in 𝑉/𝑈, there exists a 𝑣 in 𝑉 so that 𝜋(𝑣) = 𝑣 (this is almost tautological, because we
define 𝑣 = 𝜋(𝑣)). Moreover, by the decomposition 𝑉 = 𝑈⊕𝑈⊥ we know that 𝑣 = 𝑢+𝑢⊥

for some 𝑢 in 𝑈 and 𝑢⊥ in 𝑈⊥. Then 𝑣 = 𝜋(𝑣) = 𝜋(𝑢) + 𝜋(𝑢⊥) = 𝜋(𝑢⊥) = 𝜋|𝑈⊥(𝑢⊥).
Therefore 𝜋|𝑈⊥ is surjective.
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9.3 Induced maps on quotient spaces

Theorem 9.9 (General result on induced maps). Let 𝑓 ∶ 𝑉 −→ 𝑊 be a linear map, and
𝑈 ⊆ 𝑉 a linear subspace. Then 𝑓 induces a well-defined map

𝑓 ∶ 𝑉/𝑈 −→ 𝑊/𝑓(𝑈); [𝑣]𝑈 ↦ [𝑓(𝑣)]𝑓(𝑈)

such that the following diagram

𝑉 𝑊

𝑊/𝑓(𝑈)𝑉/𝑈

𝑓

𝜋𝑈 𝜋𝑓(𝑈)

∃!𝑓

commutes. In other words, 𝑓 ∘ 𝜋𝑈 = 𝜋𝑓(𝑈) ∘ 𝑓.

Here we have used the [𝑣]𝑈 and [𝑓(𝑣)]𝑓(𝑈) notation because we are dealing with quotients
of two different linear subspaces 𝑈, 𝑓(𝑈). Of course it should be clear from context,
what is meant when 𝑣 and 𝑓(𝑣) is written, but this illustrates that using the bracket-
notation can be helpful.

Proof. First we note that im(𝑓) = 𝑓(𝑈) is a linear subspace of 𝑊 and so the quotient
𝑊/𝑓(𝑈) is well-defined.

For well-definedness, we must verify that two representatives of the same class
[𝑣]𝑈 = [𝑣′]𝑈 are sent to the same element. We quickly recall that [𝑣]𝑈 = [𝑣′]𝑈 is true if
and only if 𝑣 − 𝑣′ is in 𝑈. Now calculate [𝑓(𝑣)]𝑓(𝑈) − [𝑓(𝑣′)]𝑓(𝑈) = [𝑓(𝑣) − 𝑓(𝑣′)]𝑓(𝑈) =
[𝑓(𝑣 − 𝑣′)]𝑓(𝑈) = [0]𝑓(𝑈). The first equality is true by definition of addition (subtraction)
in a quotient vector space; the second is owing to linearity of 𝑓; and the third is because
𝑣 − 𝑣′ is in 𝑈, so 𝑓(𝑣 − 𝑣′) is in 𝑓(𝑈) because 𝑈 is 𝑓-invariant.

We see this is a generalisation of our isomorphism theorem. We will not often use
this result in its full generality, but restrict ourselves to endomorphisms.

Corollary 9.10. Let 𝑓 be an endomorphism of 𝑉 and 𝑈 a linear subspace. Then 𝑓
induces a well-defined map 𝑓 ∶ 𝑉/𝑈 −→ 𝑉/𝑓(𝑈).

In fact, we will restrict ourselves to endomorphisms and invariant subspaces.

Corollary 9.11 (Induced endomorphisms). Let 𝑓 be an endomorphism of 𝑉 and 𝑈
an 𝑓-invariant linear subspace. Then 𝑓 induces a well-defined endomorphism 𝑓 on
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𝑉/𝑈 via 𝑣 ↦ 𝑓(𝑣). Note that in this case 𝑓 ∘ 𝜋𝑈 = 𝜋𝑈 ∘ 𝑓. Moreover, 𝑓
𝑘
= 𝑓𝑘 for all

𝑘 ≥ 1.

Proof. The proof is exactly the same. Take two representatives 𝑣 = 𝑣′ of the same
class. Then 𝑓(𝑣) − 𝑓(𝑣′) = 𝑓(𝑣) − 𝑓(𝑣′) = 𝑓(𝑣 − 𝑣′) = 0. The difference is that we
know that 𝑓(𝑣 − 𝑣′) lies in 𝑈 because 𝑣 − 𝑣′ lies in 𝑈 and 𝑈 is 𝑓-invariant.

Finally, to show that 𝑓
𝑘
= 𝑓𝑘, let 𝑣 lie in 𝑉/𝑈. Then

𝑓𝑘(𝑣) def.= 𝑓𝑘(𝑣) = (𝜋 ∘ 𝑓𝑘)(𝑣) = (𝜋 ∘ 𝑓 ∘ 𝑓𝑘−1)(𝑣) = (𝑓 ∘ 𝜋 ∘ 𝑓𝑘−1)(𝑣) = 𝑓
𝑘
∘ 𝜋(𝑣) = 𝑓

𝑘
(𝑣).

Corollary 9.12 (Representations of induced endomorphisms (Exercise 5.4.9(b))). Let
𝑉 be a vector space, 𝑇 an endomorphism of 𝑉 and 𝑈 a 𝑇-invariant subspace. Let
𝒰 = (𝑏1, … , 𝑏𝑘) be a basis of 𝑈 and ℬ = (𝑏1, … , 𝑏𝑘, 𝑏𝑘+1, … , 𝑏𝑛) an extension of this
basis to 𝑉. Then

[𝑇 ]ℬ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

[𝑇 |𝑈]𝒰 ∗

0 [𝑇𝑉/𝑈]
𝒬

⎞
⎟⎟⎟⎟⎟⎟
⎠

where 𝒬 = (𝑏𝑘+1, … , 𝑏𝑛) is a basis of 𝑉/𝑈 and 𝑇𝑉/𝑈 is the 𝑇-induced endomorphism
on 𝑉/𝑈. (Here we are using the notation 𝑇𝑉/𝑈 instead of 𝑇 because the notation
got a little ugly).

Proof. First we recall that for any linear map 𝐿∶ 𝐴 −→ 𝐵 and basis 𝒮 = (𝑣1, … , 𝑣𝑛) of
𝑉, the matrix [𝐿]𝒮 is the unique matrix so that 𝐿𝑣𝑖 = ∑𝑛

𝑗=1([𝐿]𝒮)𝑖𝑗𝑣𝑗.
We note that [𝑇 ]ℬ can be written as a block-matrix

[𝑇 ]ℬ = (
𝐴 𝐵
𝐶 𝐷

)

with 𝐴 in Mat𝑘×𝑘(𝑘), 𝐵 in Mat𝑘×(𝑛−𝑘)(𝑘). We now compute for 𝑖 = 1,… , 𝑘

𝑇 (𝑏𝑖) =
𝑘

∑
𝑗=1

𝐴𝑖𝑗𝑏𝑗 +
𝑛
∑

𝑗=𝑘+1
𝐶𝑖𝑗𝑏𝑗

however, since 𝑈 is 𝑇-invariant, and 𝒰 = (𝑏1, … , 𝑏𝑘) is a basis of 𝑈, we know that
𝐶𝑖𝑗 = 0.
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We continue computing for 𝑖 = (𝑘 + 1),… , 𝑛
𝑛
∑

𝑗=𝑘+1
([𝑇𝑉/𝑈]𝒬)𝑖𝑗𝑏𝑗 = 𝑇𝑉/𝑈(𝑏𝑖)

= 𝑇(𝑏𝑖)

=
𝑘

∑
𝑗=1

𝐵𝑖𝑗𝑏𝑗 +
𝑛
∑

𝑗=𝑘+1
𝐷𝑖𝑗𝑏𝑗

=
𝑘

∑
𝑗=1

𝐵𝑖𝑗 𝑏𝑗⏟
=0 in 𝑉/𝑈

+
𝑛
∑

𝑗=𝑘+1
𝐷𝑖𝑗𝑏𝑗

=
𝑛
∑

𝑗=𝑘+1
𝐷𝑖𝑗𝑏𝑗.

This is true for all 𝑖, 𝑗 therefore [𝑇𝑉/𝑈]𝒬 = 𝐷.
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10

Representations of endomorphisms and their
invariant subspaces

We recall that an endomorphism is a linear map on a vector space to itself. That is,
if 𝑉 is a vector space, the set of all linear maps 𝑇∶ 𝑉 −→ 𝑉 is denoted End(𝑉 ) and the
maps are called endomorphisms. Endomorphisms that are also isomorphisms are called
automorphisms. The set of all automorphisms of a vector space 𝑉 is denoted Aut(𝑉 ).

Since linear maps are uniquely defined by their behaviour on bases, and a linear map
is an isomorphism if and only if it sends a basis to another basis, we see a very simple
way to construct some automorphisms of a vector space 𝑉: we pick an ordered basis
(𝑏1, 𝑏2, 𝑏3, …) of 𝑉 and simply send this to a permutation (𝑏𝜎(1), 𝑏𝜎(2), 𝑏𝜎(3), …). This
construction works for infinite-dimensional spaces, but is a little easier to conceptualise
for finite-dimensional spaces.

For example, the reflection along the 𝑥 = 𝑦 axis in ℝ2 is simply the map that
permutes the 𝑥-axis and the 𝑦-axis. More formally, the linear map

𝑅∶ ℝ2 −→ ℝ2; (𝑥, 𝑦) ↦ (𝑦, 𝑥)

is the reflection at the 𝑥 = 𝑦 axis and is characterised by sending the ordered basis
((1, 0), (0, 1)) to ((0, 1), (1, 0)). This shows that for an 𝑛-dimensional 𝑘-vector space
𝑉, there must be at least |𝑆𝑛| = 𝑛! automorphisms. However, in reality there are
many more. Consider scaling by a 𝜆 in 𝑘. Clearly the scale-by-𝜆 map 𝜆 id𝑉 is an
automorphism, but it does not permute basis vectors.

An example of a non-automorphism endomorphism is a projection. An endomor-
phism 𝑃 of 𝑉 is called a projection if 𝑃 ∘ 𝑃 = 𝑃. More generally, any map 𝑓 ∶ 𝑋 −→ 𝑋
which satisfies 𝑓 ∘ 𝑓 = 𝑓 is called idempotent (does not need to be linear). This is not
to be confused with an nilpotent endomorphism, which is a linear map 𝑁 that satisfies
𝑁𝑘 = 𝑁 ∘⋯ ∘ 𝑁 = 0 for some 𝑘 > 0.

The example that we already know is the projection onto some coordinates. For
example 𝑋∶ ℝ2 −→ ℝ2; (𝑥, 𝑦) ↦ (𝑥, 0). This is the projection onto the 𝑥-axis. This can
be generalised to any linear subspace. Let 𝑉 be a vector space and 𝑈 a linear subspace.
Let 𝑏1, … , 𝑏𝑘 be a basis of 𝑈, and 𝑏𝑘+1, … , 𝑏𝑛 vectors to complete this to a basis ℬ of 𝑉.
Just like in the 𝑥-axis projection example, we want to send

(𝑣1, … , 𝑣𝑘, 𝑣𝑘1, … , 𝑣𝑛) ↦ (𝑣1, … , 𝑣𝑘, 0, … , 0)

of course the 𝑣𝑖 need to be the coordinates in the basis (𝑏1, … , 𝑏𝑛). So in other words
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the projection 𝑃𝑈 onto 𝑈 can be written as

𝑃𝑈 = [id]ℰ𝑛ℬ (
1𝑘×𝑘 0
0 0(𝑛−𝑘)×(𝑛−𝑘)

) [id]ℬℰ𝑛

Another way of writing this, is to decompose 𝑉 = 𝑈 ⊕ 𝑈⟂ (recall, we do not need a
scalar product to do this), and then define 𝑃𝑈|𝑈 = id |𝑈 and 𝑃𝑈|𝑈⟂ = 0.

Now, when given an endomorphism 𝑇 it is very natural to ask oneself which “parts”
of 𝑉 are invariant under 𝑇. Of course, the “parts” we are looking for are linear subspaces.
We saw in the projection example, that 𝑈 is invariant under 𝑃𝑈. In fact, here 𝑃𝑈|𝑈 =
id |𝑈. This is a much stronger assertion than just invariance. Recall that for a subspace
𝑈 of 𝑉, we say that 𝑈 is 𝑇-invariant if 𝑇(𝑈) ⊆ 𝑈.

In general, for any endomorphism 𝑇 in End(𝑉 ), we already know of two invariant
subspaces. Namely ker(𝑇 ) and im(𝑇 ).

A further natural object of study is set of vectors on which under a given linear
map. More precisely, if 𝑇∶ 𝑉 −→ 𝑉 is an endomorphism of the vector space 𝑉, we can
study the set of vectors for which 𝑇(𝑣) = 𝑣. Another perspective is that before, we
looked at linear subspaces that are invariant 𝑇(𝑈) ⊆ 𝑈, now we are looking at vectors
𝑣 for which 𝑇(Span(𝑣)) ⊆ Span(𝑣).

Both of these cases can be generalised by studying eigenspaces of a vector space.
For a 𝑘-vector space 𝑉, 𝑇 an endomorphism of 𝑉, and 𝜆 a scalar in 𝑘, we define an
eigenspace by

Eig𝑇(𝜆) = ker(𝑇 − 𝜆 id𝑉)

We see that this is a generalisation of the previous two cases. The kernel of an endo-
morphism 𝑇 is the eigenspace for the scalar 𝜆 = 0. The set of vectors invariant under
𝑇 is the eigenspace for the scalar 𝜆 = 1. Indeed, if 𝑣 lies in Eig1(𝑇 ) = ker(𝑇 − id𝑉),
then (𝑇 − id𝑉)(𝑣) = 𝑇(𝑣) − id𝑉(𝑣) = 𝑇(𝑣) − 𝑣 = 0, so 𝑇(𝑣) = 𝑣.

Proposition 10.1. Let 𝑇 be an endomorphism of the finite dimensional vector
space 𝑉. There exists a basis ℬ of 𝑉 so that [𝑇 ]ℬ is a block-diagonal matrix if and
only if there exist 𝑇-invariant subspaces 𝑉𝑖 of 𝑉 so that 𝑉 = 𝑉1⊕⋯⊕𝑉𝑘. If ℬ𝑖 ⊆ ℬ
is a basis of 𝑉𝑖, then the 𝑖-th block in the block-diagonal representation [𝑇 ]ℬ is
exactly [𝑇 |𝑉𝑖]ℬ𝑖

.

Let 𝑇 be an endomorphism of 𝑉. We call a linear subspace 𝑈 of 𝑉 𝑇-indecomposable
if any decomposition 𝑈 = 𝑈1 ⊕ 𝑈2 of 𝑇-invariant linear subspaces 𝑈1, 𝑈2 implies that
either 𝑈1 = {0} or 𝑈2 = {0}.

Lemma 10.2. Let 𝑇 be an endomorphism of 𝑉. There exist a 𝑇-indecomposable
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linear subspaces 𝑉𝑖 such that 𝑉 = 𝑉1 ⊕ ⋯ ⊕ 𝑉𝑘. We call this a 𝑇-indecomposable
decomposition of 𝑉.
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11

Factorising polynomials

A degree 𝑛 polynomial 𝑝(𝑋) in 𝑘[𝑋] is said to split into linear factors if it can be
written as the product 𝑝(𝑋) = (𝑋 − 𝑟1)⋯ (𝑋 − 𝑟𝑛) where the 𝑟𝑖 lie in 𝑘. Clearly the
𝑟𝑖 are roots of 𝑝. When two roots coincide 𝑟𝑖 = 𝑟𝑗 we may group these together and
rewrite the product as

𝑝(𝑋) = (𝑋 − 𝑟1)⋯ (𝑋 − 𝑟𝑛) =
𝑟

∏
𝑖=1

(𝑋 − 𝑟𝑖)
𝑚1

where 𝑟 is the number of distinct roots. In this form, we call 𝑚𝑖 the order or arithmetic
multiplicity of the root 𝑟𝑖.

Example 11.1. Not all polynomials split into linear factors. Indeed, 𝑝(𝑋) = 𝑋2+1
in ℝ[𝑋] cannot be written as 𝑝(𝑋) = (𝑋 − 𝛼)(𝑋 − 𝛽) with 𝛼, 𝛽 in ℝ. This can be
proven in many ways. Here is one way.

Suppose 𝛼, 𝛽 exist in ℝ so that 𝑝(𝑋) = 𝑋2+1 = (𝑋−𝛼)(𝑋−𝛽) = 𝑋2−(𝛼+𝛽)𝑋+1.
Then by comparing coefficients, 𝛼𝛽 = 1 and 𝛼 + 𝛽 = 0 must hold true. Clearly
𝛼 = 0 cannot be true then, so let us assume that 𝛼 > 0 without loss of generality.
Then 𝛽 < 0 since 𝛼 + 𝛽 = 0. However, then 𝛼𝛽 = 1 cannot hold, since 𝛼𝛽 < 0.

It is of note, that polynomials over ℂ (that is, polynomials in ℂ[𝑋]) always split
into linear factors.

We call fields 𝑘 for which all polynomials 𝑝(𝑋) in 𝑘[𝑋] split into linear factors
algebraically closed. That is to say, ℂ is an algebraically closed field.

11.1 A short detour on algebraically closed fields

The notions underlying algebraically closed fields is explained in the following. This
section is additional content and not super relevant to our course. However, it aims to
explain why we call a field “algebraically closed” and give examples.

Let 𝐿 be a field, and 𝑘 ⊆ 𝐿 a subset thereof. If 𝑘 is also a field under the addition
and multiplication of 𝐿, then 𝑘 is said to be a subfield of 𝐿 and 𝐿 is said to be a field
extension of 𝑘.

Examples of this are ℚ ⊆ ℝ, or ℝ ⊆ ℂ or ℚ ⊆ ℂ. Although we often think of 𝐹𝑝 =
ℤ/𝑝ℤ as {0, 1,… , (𝑝 − 1)} we note that 𝐹𝑝 is not a subfield of ℚ. Indeed, in ℚ we know
that 1+ℚ1+ℚ1+ℚ⋯+ℚ1 = 𝑝 however in 𝐹𝑝 we have 1+𝐹𝑝1+𝐹𝑝1+𝐹𝑝⋯+𝐹𝑝1+𝐹𝑝1 = 0.
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Here we see that even though 𝐹𝑝 may be thought of as a subset of ℚ it is certainly not
a subfield, because the operations are not the same (+𝐹𝑝 v.s. +ℚ).

An element 𝛼 in 𝐿 is said to be algebraic over 𝑘 if it is the root of a non-trivial
polynomial in 𝑘[𝑋]. All elements in 𝑘 are algebraic over 𝑘. Indeed, 𝑋−𝛼 is a polynomial
in 𝑘[𝑋] and has 𝛼 as a root.

We call the set of all elements 𝛼 in 𝐿 that are algebraic over 𝑘 the algebraic closure
of 𝑘 in 𝐿 and denote it 𝑘.

A subfield 𝑘 of 𝐿 is said to be algebraically closed in 𝐿 if the algebraic closure of
𝑘 is 𝑘 itself. When 𝑘 = 𝐿 we simply say 𝑘 is algebraically closed.

Time for some examples

Example 11.2 (ℚ is not algebraically closed in ℚ). The polynomial 𝑝(𝑋) = 𝑋2 − 2
cannot be written as (𝑋 −𝛼)(𝑋 −𝛽) for 𝛼, 𝛽 in ℚ. Essentially this is because √2 is
not a rational number, i.e. does not lie in ℚ. However we will give a short proof
that forgoes any mention of the square root and uses prime factorisation of the
integers instead.

If 𝑝(𝑋) were to split into linear factors (𝑋 − 𝛼)(𝑋 − 𝛽) with 𝛼, 𝛽 in ℚ, then
𝛼𝛽 = −2. However, since any solution 𝜆 of 𝑝(𝜆) = 0 also has −𝜆 as a solution, we
see that 𝛼 = −𝛽. So 𝛼 = 𝛽 = −2 implies 𝛼2 = 2 and there would exist coprime3

integers 𝑛,𝑚 with 𝛼 = 𝑛/𝑚 such that 𝑛2 = 2𝑚2.
Now clearly 𝑛2 must be even, since 𝑛2/2 = 𝑚2 is an integer. However, since

2 is a prime number, 2 dividing 𝑛2 implies 2 divides 𝑛. This fact is true for all
primes 𝑝 dividing a product 𝑎𝑏 of integers 𝑎, 𝑏, then 𝑝 must divide 𝑎 or 𝑏. So 𝑛 is
even, and 𝑛2 is divisible by 4. So there exists an integer 𝑛′ so that 4𝑛′ = 𝑛2. Then
𝑚 = 𝑛2/2 = 2𝑛′ and 𝑚 is even. This contradicts that 𝑛,𝑚 are coprime.

Example 11.3 (ℚ is not algebraically closed in ℝ).

3A pair of integers 𝑛,𝑚 are said to be coprime if the greatest common divisor is 1.
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12

Diagonalisability

Theorem 12.1 (Main characterisations of Diagonalisability). Let 𝑇 be an endomor-
phism of the finite dimensional 𝑘-vector space 𝑉. The following statements are
equivalent

(i) 𝑇 is diagonalisable.

(ii) The characteristic polynomial of 𝑇 splits into linear factors and the arithmetic
multiplicity of each eigenvalue is equal to the geometric multiplicity of each
eigenvalue.

(iii) There exists an eigenspace decomposition of 𝑉. That is

𝑉 = Eig𝑇(𝜆1) ⊕⋯⊕ Eig𝑇(𝜆𝑘)

where 𝜆𝑖 are distinct eigenvalues of 𝑇.

There are some less deep, yet nonetheless equivalent characterisations.

Corollary 12.2 (Further characterisations of Diagonalisability). Let 𝑇 be an endo-
morphism of the 𝑛-dimensional vector space 𝑉. The following statements are
equivalent

(i) 𝑇 is diagonalisable.

(ii) There are 𝑛 linearly-independent eigenvectors of 𝑇.

(iii) The sum of the dimensions of the eigenspaces is dim(𝑉 ).

Lemma 12.3. Let 𝑇 be an endomorphism of a finite dimensional 𝑘-vector space
𝑉. Let 𝜆 be an eigenvalue of 𝑇. Then 1 ≤ 𝑚𝑔(𝜆) ≤ 𝑚𝑎(𝜆). That is, the geometric
multiplicity of 𝜆 is at most the algebraic multiplicity and at least 1.

Proof. If 𝜆 is an eigenvalue, then 𝑝𝑇(𝜆) = det(𝑇 − 𝜆 id) = 0. Therefore 𝑇 −𝜆 id is not
invertible, and as such cannot be injective and must have a non-trivial kernel. Hence
1 ≤ dim(ker(𝑇 − 𝜆 id)) = 𝑚𝑔(𝜆).

Suppose the geometric multiplicity of 𝜆 is 𝑘, then there are 𝑘 linearly independent
eigenvectors 𝑣1, … , 𝑣𝑘 of 𝑇 with eigenvalue 𝜆. Using the basis extension lemma, we can
extend 𝑣1, … , 𝑣𝑘 to a basis ℬ = (𝑣1, … , 𝑣𝑘, 𝑣𝑘+1, … , 𝑣𝑛) of 𝑉. Then

[𝑇 ]ℬ = (
𝜆𝐼𝑘 𝐵
0 𝐷

)
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and by Laplace expansion successively down the first column we calculate the charac-
teristic polynomial of 𝑇 to be 𝑝𝑇(𝑥) = (𝑥 − 𝜆)𝑘𝑝𝐷(𝑥). Hence the algebraic multiplicity
of 𝜆 is at least 𝑘, that is at least the geometric multiplicity.

12.1 Calculating diagonalisability criteria

Let 𝑇 be an 𝑛 × 𝑛-matrix. First we outline the steps. Then we will show each of the
steps with an example.

(i) Calculate the characteristic polynomial using the definition

char𝑇(𝜆) = det(𝑇 − 𝜆 id𝑛).

As we will see in the later example, it can be very beneficial to use row (column)
operations to simplify the matrix before calculating the determinant. This will
likely help with the factorisation steps later.

(ii) Factorise the characteristic polynomial into linear factors to obtain
the eigenvalues and their arithmetic multiplicities. Here the usual method
is to guess roots and then use polynomial division until there is only a quadratic
polynomial remaining. Then one can use the quadratic formula.

If the polynomial does not split into a product of linear polynomials, then we
know that 𝑇 is not diagnosable.

Example. 𝑝(𝑥) = 𝑥1 + 1 does not split into linear factors over the reals.

If the polynomial does split into a product of linear factors, and the roots are
distinct, we immediately know that 𝑇 is diagonalisable. We recall that the roots
are distinct if and only if the arithmetic multiplicity is 1 for each root. Moreover,
we know that the geometric multiplicity 𝑚𝑔(𝜆) of any eigenvalue 𝜆 satisfies 1 ≤
𝑚𝑔(𝜆) ≤ 𝑚𝑎(𝜆). Since 𝑚𝑎(𝜆) = 1, we conclude that 𝑚𝑔(𝜆) = 𝑚𝑎(𝜆) for every
eigenvalue.

Example. 𝑝(𝑥) = 𝑥2 − 1 = (𝑥 + 1)(𝑥 − 1) splits into linear factors over the
rationals.

If the roots are not distinct, we must calculate the geometric multiplicity of the
eigenvalues manually.

Example. 𝑝(𝑥) = 𝑥3 −7𝑥 + 16𝑥 − 12 = (𝑥 − 2)2(𝑥 − 3) splits into linear factors,
but the roots are not pairwise distinct: 𝜆 = 2 is a double root.
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(iii) Compute the dimension of the eigenspaces using the definition

Eig𝑇(𝜆) = ker(𝑇 − 𝜆 id𝑛)

and the Gauss Algorithm. Concretely, put the matrix in row-echelon form, and
count the number of zero-rows. We do not need to calculate any elements explic-
itly.

At this point, we know whether the matrix is diagonalisable or not.

(iv) Compute a basis of each of the eigenspaces. This can usually be easily
done using the Gauss algorithm.

(v) Use the Gram-Schmidt algorithm to find orthogonal bases of the
eigenspaces. The Gram-Schmidt algorithm guarantees that the matrix will still
be diagonal.
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We will be following these steps with an example of

𝑇 =

⎛
⎜⎜⎜⎜⎜
⎝

−4 −3 −1 −7
−3 −1 −1 −4
6 4 3 8
3 3 1 6

⎞
⎟⎟⎟⎟⎟
⎠

(i) Calculate the characteristic polynomial using the definition

char𝑇(𝜆) = det(𝑇 − 𝜆 id𝑛).
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In our example this amounts to calculating

det

⎛
⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

−4 − 𝜆 −3 −1 −7
−3 −1 − 𝜆 −1 −4
6 4 3 − 𝜆 8
3 3 1 6 − 𝜆

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟
⎠

Laplace 𝑅1= (−4 − 𝜆)det
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

−1 − 𝜆 −1 −4
4 3 − 𝜆 8
3 1 6 − 𝜆

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

+ 3det
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

−3 −1 −4
6 3 − 𝜆 8
3 1 6 − 𝜆

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

− 1det
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

−3 −1 − 𝜆 −4
6 4 8
3 3 6 − 𝜆

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

+ 7det
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

−3 −1 − 𝜆 −1
6 4 3 − 𝜆
3 3 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

= (−4 − 𝜆)((−1 − 𝜆)((3 − 𝜆)(6 − 𝜆) − 8) + 1(4(6 − 𝜆) − 24) − 4(4 − (3 − 𝜆)3))

+ 3( − 3((3 − 𝜆)(6 − 𝜆) − 8) + 1(6(6 − 𝜆) − 24) − 4(6 − (3 − 𝜆)3))

−(− 3(4(6 − 𝜆) − 24) − (−1 − 𝜆)(6(6 − 𝜆) − 24) − 4(18 − 12))

+ 7( − 3(4 − (3 − 𝜆)3) − (−1 − 𝜆)(6 − (3 − 𝜆)3) − 1(18 − 12))

= ⋯

= 𝜆4 − 4𝜆3 + 3𝜆2 + 4𝜆 − 4
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det

⎛
⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

−4 − 𝜆 −3 −1 −7
−3 −1 − 𝜆 −1 −4
6 4 3 − 𝜆 8
3 3 1 6 − 𝜆

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟
⎠

𝑅1←𝑅1+𝑅4= det

⎛
⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

−1 − 𝜆 0 0 −1 − 𝜆
−3 −1 − 𝜆 −1 −4
6 4 3 − 𝜆 8
3 3 1 6 − 𝜆

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟
⎠

𝐶4←𝐶4−𝐶1= det

⎛
⎜⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜⎜
⎝

−1 − 𝜆 0 0 0
−3 −1 − 𝜆 −1 −1
6 4 3 − 𝜆 2
3 3 1 3 − 𝜆

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟
⎠

Laplace along 𝑅1= (−1 − 𝜆)det
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

−1 − 𝜆 −1 −1
4 3 − 𝜆 2
3 1 3 − 𝜆

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

𝐶3←𝐶3−𝐶1= (−1 − 𝜆)det
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

−1 − 𝜆 −1 𝜆
4 3 − 𝜆 −2
3 1 −𝜆

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

𝑅1←𝑅1+𝑅3= (−1 − 𝜆)det
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

2 − 𝜆 0 0
4 3 − 𝜆 −2
3 1 −𝜆

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

Laplace along 𝑅1= (−1 − 𝜆)(2 − 𝜆)det((
3 − 𝜆 −2
1 −𝜆

))

= (−1 − 𝜆)(2 − 𝜆)(−𝜆(3 − 𝜆) + 2)

= (−1 − 𝜆)(2 − 𝜆)(𝜆2 − 3𝜆 + 2)

Of course here 𝑅𝑖 stands for the 𝑖-th row, and 𝐶𝑗 stands for the 𝑗-th column.

(ii) Factorise the characteristic polynomial. Here the usual method is to guess
roots and then use polynomial division until there is only a quadratic polynomial
remaining. Then one can use the quadratic formula.

For example consider 𝑝(𝑋) = 𝑋4 − 4𝑋3 + 3𝑋2 + 4𝑋 − 4. Calculating 𝑝(1) =
1 − 4 + 3 + 4 − 4 = 0 we obtain a root 𝑋 = 1. Using polynomial division
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we then see that 𝑝(𝑋) = (𝑋 − 1)(𝑋3 − 3𝑋2 + 4). Now repeat the process by,
guessing a root of 𝑞(𝑋) = 𝑋3 − 3𝑋2 + 4. We can try 𝑞(1) = 1 − 3 + 4 = 2. We
can try 𝑞(−1) = −1 − 3 + 4 = 0. Again using polynomial division we obtain
𝑞(𝑋) = (𝑋 +1)(𝑋2−4𝑋 +4). Finally, we use the quadratic formula to find roots
of 𝑟(𝑋) = 𝑋2 − 4𝑋 + 4.
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13

Inner-product spaces

Scalar products have two main interpretations: a geometric one, namely a scalar prod-
uct encodes what it means for vectors to be orthogonal; and a topological one: a scalar
products gives us a metric which we can use to define a topology on the vector space.

13.1 Bilinear forms

Definition 13.1 (Multi-linear map). Let 𝑉 ,𝑊 be 𝑘-vector spaces. A 𝑛-linear map is
a map 𝜏 ∶ 𝑉 𝑛 −→ 𝑊 so that for all all 𝑖 = 1,… , 𝑛 and 𝑣1, … , 𝑣𝑖−1, 𝑣𝑖+1, … , 𝑣𝑛 in 𝑉, the
map

𝜏𝑖 ∶ 𝑉 −→ 𝑊; 𝑣 ↦ 𝜏(𝑣1, … , 𝑣𝑖−1, 𝑣, 𝑣𝑖+1, … , 𝑣)

is linear. Maps like this are called multi-linear. If 𝑊 = 𝑘, then we speak of a multi-
linear form.

Remark. This coincides with the term linear form. Namely, a linear map 𝑉 −→ 𝑘. We
drop the “1-” from “1-linear form” when speaking of linear forms.

Definition 13.2 (Bilinear form). A bilinear form on a vector space 𝑉 is a map
𝑏 ∶ 𝑉 × 𝑉 −→ 𝑘 so that for all 𝑤 in 𝑉, the maps

𝑏1 ∶ 𝑉 −→ 𝑘; 𝑣 −→ 𝑏(𝑣,𝑤) and 𝑏2 ∶ 𝑉 −→ 𝑘; 𝑣 −→ 𝑏(𝑤, 𝑣)

are linear. We often denote the maps 𝑏1 and 𝑏2 as 𝑏(⋅, 𝑤) and 𝑏(𝑤, ⋅) respectively. A
bilinear form is said to be symmetric if 𝑏(𝑣, 𝑤) = 𝑏(𝑤, 𝑣) for all 𝑣,𝑤 in 𝑉. Finally, a
bilinear form is said to be positive definite if 𝑏(𝑣, 𝑣) ≥ 0 for all 𝑣 in 𝑉 and 𝑏(𝑣, 𝑣) = 0
if and only if 𝑣 = 0.

Definition 13.3 (Sesquilinear form). Let 𝑘 be a field in which the complex conjugate
is defined (e.g. ℚ,ℝ,ℂ). Let 𝑉 be a 𝑘-vector space. A sesquilinear form on 𝑉 is a map
𝑠 ∶ 𝑉 ×𝑉 −→ 𝑘 so that for all 𝑤 in 𝑉 the map 𝑏1 ∶ 𝑉 −→ 𝑘; 𝑣 −→ 𝑠(𝑣,𝑤) is linear (as before),
but now for all 𝑣,𝑤, 𝑢 in 𝑉 and 𝛼 in 𝑘 we have

𝑏(𝑣, 𝛼𝑤 + 𝑢) = 𝛼𝑏(𝑣,𝑤) + 𝑏(𝑣, 𝑢).

Note that sometimes this is written the other way round, with a sesquilinear form
being linear in the second argument. Just make sure you know which convention you
are following. Here we do not speak of symmetric forms, but of Hermitian forms,
namely forms that satisfy 𝑏(𝑣, 𝑤) = 𝑏(𝑤, 𝑣).
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13.2 Scalar Products

Definition 13.4 (Scalar product). A scalar product on a ℂ-vector space 𝑉 is a Her-
mitian positive definite sesquilinear form. We define a scalar product in the same way
on a ℝ-vector space. Here we note that being sesquilinear is the same as being bilinear,
and Hermitian is the same as being symmetric. Instead of denoting these sesquilinear
forms by 𝑏(⋅, ⋅) or 𝑠(⋅, ⋅), we often use the notation ⟨⋅, ⋅⟩.

Example 13.5. The standard scalar product. Let 𝑉 be an 𝑛-dimensional ℂ-vector
space. Then the standard scalar product on 𝑉 is defined as

𝑉 × 𝑉 −→ 𝑘; (𝑣, 𝑤) ↦
𝑛
∑
𝑖=1

𝑤𝑖𝑣𝑖

where 𝑣𝑖, 𝑤𝑖 are the coordinates of the vectors 𝑣,𝑤 expressed in the standard basis
ℰ𝑛 of 𝑉.

This is a very important example. It gives us an easy way of defining a scalar
product on any ℂ or ℝ vector space. This will be relevant for the spectral theorems.

Example 13.6. Let 𝑉 = 𝐶([0, 1]) be the space of continuous functions 𝑓 ∶ [0, 1] −→ ℂ.
We can define a scalar product on 𝑉 with

⟨𝑓, 𝑔⟩ = ∫
1

0
𝑓(𝑥)𝑔(𝑥)d𝑥

Exercise 13.7. Is this still an scalar product if defined on the space of square-
integrable functions ℒ2([0, 1]) (not just the continuous functions)?

Definition 13.8 (Inner-product space). We call a vector space equipped with a scalar
product an inner-product space. We often denote this as (𝑉 , ⟨⋅, ⋅⟩).

Lemma 13.9. Let (𝑉 , ⟨⋅, ⋅⟩) be an inner-product space and 𝑣,𝑤 in 𝑉. If ⟨𝑣, 𝑢⟩ =
⟨𝑤, 𝑢⟩ for all 𝑢 in 𝑉, then 𝑣 = 𝑤.

Remark. It does not suffice for ⟨𝑣, 𝑢⟩ = ⟨𝑤, 𝑢⟩ for one 𝑢, it must be for all 𝑢 in
𝑉. Choosing 𝑢 = 0 would otherwise tell us that any two vectors 𝑣,𝑤 are the same,
because ⟨𝑣, 0⟩ = ⟨𝑤, 0⟩ = 0 due to sesquilinearity.

Lemma 13.10. Let ⟨⋅, ⋅⟩ be a scalar product on an 𝑛-dimensional ℂ-vector space
𝑉. Then for any basis ℬ of 𝑉 there exists a matrix 𝑀ℬ in Mat𝑛×𝑛(ℂ) so that

⟨𝑣, 𝑤⟩ = (𝑣ℬ)𝑡𝑀ℬ𝑤ℬ.

Here 𝑣ℬ is the vector 𝑣 expressed in the basis ℬ and has dimensions 1×𝑛. Moreover,
the matrix is Hermitian, that is, it is equal to its conjugate transpose.
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13.3 Geometry of inner-product spaces

Definition 13.11 (Orthogonal vectors). Let (𝑉 , ⟨⋅, ⋅⟩) be an inner-product space.
Then we say that two vectors 𝑣,𝑤 are orthogonal if ⟨𝑣, 𝑤⟩ = 0. We often denote
this by 𝑣 ⟂ 𝑤.

Lemma 13.12. Every finite dimensional vector space has an orthogonal basis.

Proof. We know that every finite dimensional vector space has a basis. The Gram-
Schmidt algorithm can be applied to this basis to find an orthogonal basis.

13.4 Topology of inner-product spaces

Lemma 13.13. Let (𝑉 , ⟨⋅, ⋅⟩) be an inner-product space. Then

‖𝑥‖ = √⟨𝑥, 𝑥⟩

defines a norm on 𝑉 which in turn defines a metric on 𝑉

d(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ = √⟨𝑥 − 𝑦, 𝑥 − 𝑦⟩.

As we know, every metric induces a topology by defining open neighbourhoods via
open balls. More formally, given a space 𝑋 with a metric d(⋅, ⋅) we define the open ball
of radius 𝑟 at 𝑥 by 𝐵𝑥(𝑟) = {𝑦 ∈ 𝑋 ∣ d(𝑥, 𝑦) < 𝑟}. We then say a set 𝑈 ⊆ 𝑋 is open
if for every point 𝑢 in 𝑈 there exists a 0 < 𝑟𝑢 so that 𝐵𝑢(𝑟𝑢) ⊆ 𝑈. Equivalently, we say
that 𝑈 is open if it is the union of (arbitrarily many) balls 𝐵𝑢(𝑟𝑢).

Lemma. The standard topology on ℝ𝑛 is induced by the standard scalar product.

However, not every norm on 𝑉 is induced by a scalar product. We have the following
lemma to decide this

Lemma 13.14. Let 𝑉 be an ℝ-vector space with a norm ‖⋅‖. The norm ‖⋅‖ is
induced by a scalar product if and only if the parallelogram equality holds for all
𝑣,𝑤 in 𝑉

‖𝑣 + 𝑤‖2 + ‖𝑣 − 𝑤‖2 = 2‖𝑣‖2 + 2‖𝑤‖2

13.5 Scalar Products and the dual space

Let (𝑉 , ⟨⋅, ⋅⟩) be an inner-product 𝑘-vector space. Then for every 𝑢 in 𝑉

𝜑𝑢 ∶ 𝑉 −→ 𝑘; 𝑣 ↦ ⟨𝑣, 𝑢⟩
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is a linear map. (This follows the convention, that scalar products are linear in their
first argument. If your convention states that scalar products are linear in the second
argument, then you must switch the order of the elements in the scalar product above).

Therefore 𝜑𝑢 lies in the dual 𝑉 ∗. Is the opposite true? This is answered by

Theorem 13.15 (Riesz). Let (𝑉 , ⟨⋅, ⋅⟩) be a finite dimensional inner-product space.
Then 𝛷∶ 𝑉 −→ 𝑉 ∗; 𝑣 ↦ 𝜑𝑣(⋅) = ⟨⋅, 𝑢⟩ is a bijection. If 𝑉 is a real vector space, then 𝛷
is a (bijective) linear map, and therefore an isomorphism. In fact, it is a canonical
isomorphism.

Remark. We note that 𝛷 is not an isomorphism when 𝑉 is a ℂ-vector space. It is not
linear, because ⟨⋅, ⋅⟩ is sesquilinear in the second argument, and not linear.

Remark. A short note on notation. 𝛷∶ 𝑉 −→ 𝑉 ∗ is a map into the dual 𝑉 ∗. This means
by definition, that for every 𝑣 in 𝑉, 𝛷(𝑣) is a map 𝑉 −→ 𝑘. There are many ways of
writing “a map that sends an element to a new map”. Here are three ways

𝛷∶ 𝑉 −→ 𝑉 ∗; 𝑢 ↦ (𝑣 ↦ ⟨𝑣, 𝑢⟩)

𝛷∶ 𝑉 −→ 𝑉 ∗; 𝑢 ↦ ⟨⋅, 𝑢⟩

𝛷∶ 𝑉 −→ 𝑉 ∗; 𝑢 ↦ 𝜑𝑢(⋅)

Proof. We note that in the real case, the map 𝛷 is clearly linear. It only remains to
show that it is a bijection.

Injectivity of 𝛷 follows from Lemma 13.9. Indeed, if 𝜑𝑢(⋅) = 𝜑𝑢′(⋅), then by definition
⟨𝑣, 𝑢⟩ = ⟨𝑣, 𝑢′⟩ for all 𝑣 in 𝑉. Then by Lemma 13.9 we know that 𝑢 = 𝑢′.

To show surjectivity, we choose a linear form 𝑓 in 𝑉 ∗ and choose an orthonormal
basis ℬ = (𝑏1, … , 𝑏𝑛) of 𝑉. Now, for any vector 𝑣 in 𝑉 we may write 𝑣 = ⟨𝑣, 𝑏1⟩ 𝑏1 +
⋯+ ⟨𝑣, 𝑏𝑛⟩ 𝑏𝑛. Then

𝑓(𝑣) = 𝑓(
𝑛
∑
𝑖=1

⟨𝑣, 𝑏𝑖⟩ 𝑏𝑖) =
𝑛
∑
𝑖=1

⟨𝑣, 𝑏𝑖⟩ 𝑓(𝑏𝑖) =
𝑛
∑
𝑖=1

⟨𝑣, 𝑓(𝑏𝑖)𝑏𝑖⟩ = ⟨𝑣,
𝑛
∑
𝑖=1

𝑓(𝑏𝑖)𝑏𝑖⟩.

Now 𝑢 def.= ∑𝑛
𝑖=1 𝑓(𝑏𝑖)𝑏𝑖 does not depend on 𝑣: 𝑣 does not appear in the expression

anywhere. Therefore 𝑓 = ⟨⋅, 𝑢⟩ = 𝛷(𝑢).
We also note that 𝑢 does not depend on the choice of basis ℬ. Let 𝒞 = (𝑐1, … , 𝑐𝑛)

be another orthonormal basis of 𝑉. Then by the same computation, we have that

𝑓(𝑣) = ⟨𝑣,
𝑛
∑
𝑖=1

𝑓(𝑐𝑖)𝑐𝑖⟩ = ⟨𝑣,
𝑛
∑
𝑖=1

𝑓(𝑏𝑖)𝑏𝑖⟩.

This equality holds for all 𝑣 in 𝑉, therefore by Lemma 13.9 we have ∑𝑛
𝑖=1 𝑓(𝑏𝑖)𝑏𝑖 =

∑𝑛
𝑖=1 𝑓(𝑐𝑖)𝑐𝑖. This makes the isomorphism canonical in the real case.
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Remark. We showed that in the real case (𝑉 , ⟨⋅, ⋅⟩) is canonically isomorphic to 𝑉 ∗.
We have previously mentioned though, that in general 𝑉 is not canonically isomorphic
to 𝑉 ∗. We need the scalar product to find this canonical isomorphism. On the other
hand, we have already previously mentioned that any (finite dimensional) vector space
can be given the standard scalar product (Example 13.5).

It sounds like we can give a vector space (which is not canonically isomorphic to
its dual) the standard scalar product, and then it is canonically isomorphic to its dual.
What gives?

When endowing a (finite dimensional) vector space with the standard scalar product,
we are making a choice of a basis.
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14

The spectral theorems

14.1 The adjoint and its properties

Consider a linear map of inner-product spaces 𝑇∶ (𝑉 , ⟨⋅, ⋅⟩𝑉) −→ (𝑊, ⟨⋅, ⋅⟩𝑊). Then, for
every 𝑤 in 𝑊 we obtain a linear map

𝜑𝑤 ∶ 𝑉 −→ 𝑘; 𝑣 ↦ ⟨𝑇(𝑣), 𝑤⟩𝑊

So 𝜑𝑤 lies in 𝑉 ∗. The theorem of Riesz 13.15 tells us that 𝜑𝑤(⋅) = ⟨⋅, 𝑢⟩ for some 𝑢 in
𝑉. Let us define 𝑇 ∗(𝑤) = 𝑢. Then

⟨𝑇 (𝑣), 𝑤⟩𝑊 = ⟨𝑣, 𝑇 ∗(𝑤)⟩𝑉

for all 𝑣 in 𝑉 and 𝑤 in 𝑊.
If 𝑉 ,𝑊 are ℝ-vector spaces we can look back at our proof of the theorem of Riesz,

and note that 𝑇 ∗ = 𝛷−1 and is therefore linear.
For ℂ-vector spaces we simply compute for all 𝑤,𝑤 ′ in 𝑊

⟨𝑣, 𝑇 ∗(𝑤 + 𝑤 ′)⟩ = ⟨𝑇 (𝑣), 𝑤 + 𝑤 ′⟩

= ⟨𝑇 (𝑣), 𝑤⟩ + ⟨𝑇 (𝑣), 𝑤 ′⟩

= ⟨𝑣, 𝑇 ∗(𝑤)⟩ + ⟨𝑣, 𝑇 ∗(𝑤 ′)⟩

= ⟨𝑣, 𝑇 ∗(𝑤) + 𝑇 ∗(𝑤 ′)⟩ .

Since this is true for all 𝑣 in 𝑉, we see that 𝑇 ∗(𝑤 + 𝑤 ′) = 𝑇 ∗(𝑤) + 𝑇 ∗(𝑤 ′). Similarly,
we compute for all 𝛼 in ℂ and 𝑤 in 𝑊

⟨𝑣, 𝑇 ∗(𝛼𝑤)⟩ = ⟨𝑇 (𝑣), 𝛼𝑤⟩ = 𝛼 ⟨𝑇 (𝑣), 𝑤⟩ = 𝛼 ⟨𝑣, 𝑇 ∗(𝑤)⟩ = ⟨𝑣, 𝛼𝑇 ∗(𝑤)⟩ .

Again, since this holds for all 𝑣 in 𝑉, we see that 𝑇 ∗(𝛼𝑤) = 𝛼𝑇 ∗(𝑤). We summarise
this in a

Lemma 14.1. For every linear map of inner-product spaces 𝑇∶ (𝑉 , ⟨⋅, ⋅⟩𝑉) −→ (𝑊, ⟨⋅, ⋅⟩𝑊)
there exists a unique map 𝑇 ∗ ∶ 𝑊 −→ 𝑉 so that for all 𝑣 in 𝑉 and 𝑤 in 𝑊 we have

⟨𝑇 (𝑣), 𝑤⟩𝑊 = ⟨𝑣, 𝑇 ∗(𝑣)⟩𝑉

We call this map the adjoint of 𝑇.

Proposition 14.2 (Proposition 7.1.6). Let 𝑇∶ 𝑉 −→ 𝑊 be a linear map between inner-
products spaces. Let 𝒱 = (𝑣1, … , 𝑣𝑛),𝒲 = (𝑤1, … ,𝑤𝑛) be orthonormal bases of 𝑉 ,𝑊
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respectively. Then [𝑇 ∗]𝒲𝒱 = [𝑇 ]𝒱𝒲
∗
. In particular, if 𝑇 is an endomorphism, then

[𝑇 ∗]ℬ = [𝑇 ]∗ℬ for any orthonormal basis ℬ of 𝑉.

Proof. The proof is very direct. First recall, the general fact of inner-product spaces:
if 𝑍 is a finite-dimensional inner-product space with an orthonormal basis 𝒵 = (𝑧1, … ,
𝑧𝑛), then the 𝑖-th component of any vector 𝑧 in 𝑍 when represented under the basis 𝒵
is ⟨𝑧, 𝑧𝑖⟩𝑍. In symbols this means

𝑧𝒵 = ( ⟨𝑧, 𝑧1⟩ , … , ⟨𝑧, 𝑧𝑛⟩ )
𝑡.

Now

([𝑇 ∗]𝒲𝒱 )
𝑖,𝑗

def.= (𝑇 ∗(𝑤𝑗)𝒱)𝑖
= ⟨𝑇 ∗(𝑤𝑗), 𝑣𝑖⟩ = ⟨𝑣𝑖, 𝑇 ∗(𝑤𝑗)⟩ = ⟨𝑇(𝑣𝑖), 𝑤𝑗⟩ = (𝑇(𝑣𝑖)𝒲)

𝑗

def.= ([𝑇 ]𝒱𝒲)
𝑗,𝑖

= ([𝑇 ]𝒱𝒲)
∗

𝑖,𝑗

and we are done.

Definition 14.3 (Normal operators, normal matrices). An endomorphism 𝑇 of an
inner-product space is normal if it commutes with its adjoint. That is, if 𝑇𝑇 ∗ = 𝑇 ∗𝑇.
We call a matrix 𝐴 normal if it commutes with its adjoint.

Lemma 14.4. Let (𝑉 , ⟨⋅, ⋅⟩) be a finite-dimensional inner-product space. An en-
domorphism 𝑇 of 𝑉 is normal if and only if its representations matrix [𝑇 ]ℬ with
respect to an orthonormal basis ℬ of 𝑉 is normal.

Proof. Suppose 𝑇 is normal. Then

[𝑇 ]∗ℬ[𝑇 ]ℬ = [𝑇 ∗]ℬ[𝑇 ]ℬ = [𝑇 ∗𝑇 ]ℬ = [𝑇𝑇 ∗]ℬ = [𝑇 ]ℬ[𝑇
∗]ℬ = [𝑇 ]ℬ[𝑇 ]∗ℬ.

Here we used Proposition 14.2 twice. Notice that this requires ℬ to be orthonormal.
The converse is exactly analogous. Indeed, suppose [𝑇 ]ℬ is normal, then

[𝑇 ∗𝑇 ]ℬ = [𝑇 ∗]ℬ[𝑇 ]ℬ = [𝑇 ]∗ℬ[𝑇 ]ℬ = [𝑇 ]ℬ[𝑇 ]∗ℬ = [𝑇 ]ℬ[𝑇
∗]ℬ = [𝑇𝑇 ∗]ℬ.

Since a representations matrix uniquely defines the linear operator, we conclude that
𝑇𝑇 ∗ = 𝑇 ∗𝑇 and that 𝑇 is normal.

14.2 Trigonalisability

In this section we will prove the big

Lemma 14.5. Let 𝑇 be an endomorphism of a finite-dimensional 𝑘-vector space
𝑉. The characteristic polynomial 𝑝𝑇 of 𝑇 splits into linear splits into linear factors
over 𝑘 if and only if 𝑇 is trigonalisable.
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We recall that an endomorphism 𝑇 is said to be trigonalisable if there exists a basis ℬ
so that [𝑇 ]ℬ is an upper triangle matrix. In a sense this can be seen as a precursor to
diagonalising a matrix or putting it in Jordan Form.

Proof. If 𝑇 is trigonalisable, it is clear that the characteristic polynomial splits into
linear factors over 𝑘.

Conversely, suppose the characteristic polynomial 𝑝𝑇(𝑥) of 𝑇 splits into linear fac-
tors. We want to show that 𝑇 is trigonalisable. We will do this via induction over
the dimension of the space 𝑉. For 𝑛 = 1 the result is clear. In fact every linear map
𝑇∶ ℝ1 −→ ℝ1 is trigonalisable.

Now let us assume that the result is true for all endomorphisms of vector spaces of
dimension 𝑘 = 1,… , (𝑛 − 1) and let 𝑉 be 𝑛-dimensional with 𝑇 an endomorphism of 𝑉
for which the characteristic polynomial 𝑝𝑇(𝑥) splits over 𝑘.

Let 𝜆 (in 𝑘) be a root of 𝑝𝑇(𝑥). Then 𝜆 is an eigenvalue, and we can write down
𝛬 = ⟨ 𝑣𝜆 ⟩ for any eigenvector 𝑣𝜆 to the value 𝜆. Clearly 𝛬 is a 𝑇-invariant subspace of
𝑉. By Corollary 9.11 we know that 𝑇 induces an endomorphism 𝑇∶ 𝑉/𝛬 −→ 𝑉/𝛬.

Since dim(𝑉/𝛬) = dim(𝑉 ) − dim(𝛬) = dim(𝑉 ) − 1 < dim(𝑉 ) we are in a good
position to use the induction hypothesis. However, we do not know yet, whether the
characteristic polynomial 𝑝𝑇(𝑥) of 𝑇 splits over 𝑘.

This is not too hard, since we have done all the work in Corollary 9.12. By definition
(𝑣𝜆) is a basis of 𝛬. Let ℬ = (𝑣𝜆, 𝑏2, … , 𝑏𝑛) be a basis of 𝑉 and denote 𝒬 = (𝑏2, … , 𝑏𝑛).
This is a basis of 𝑉/𝛬. Now the corollary tells us that

[𝑇 ]ℬ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

[𝑇 |𝛬](𝑣𝜆) ∗

0 [𝑇]
𝒬

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

𝜆 ∗

0 [𝑇]
𝒬

⎞
⎟⎟⎟⎟⎟⎟
⎠

therefore 𝑝𝑇(𝑥) = 𝑝𝑇 |𝛬(𝑥)𝑝𝑇(𝑥) = (𝑥 − 𝜆)𝑝𝑇(𝑥). At this point we recall that 𝛬 = ⟨ 𝑣𝜆 ⟩
so restricting 𝑇 to 𝛬 yields the map 𝑇 |𝛬 = (𝑣 ↦ 𝜆𝑣).

We can now conclude that 𝑝𝑇(𝑥) splits over 𝑘

𝑝𝑇(𝑥) =
𝑝𝑇(𝑥)
𝑝𝑇 |𝛬(𝑥)

=
𝑝𝑇(𝑥)
𝑥 − 𝜆

= ∏
𝜇≠𝜆

𝜇 eigenvalue

(𝑥 − 𝜇)

We may apply the induction hypothesis to conclude that 𝑇 is trigonalisable. There-
fore there exists a basis 𝒫 of the quotient 𝑉/𝛬 so that [𝑇]𝒫 is an upper-triangle matrix.

Equivalently, there exists a 𝑇-invariant flag {0} ⊆ 𝑊1 ⊆ 𝑊2 ⊆ ⋯ ⊆ 𝑊𝑛−1 = 𝑉/𝛬.
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Corollary 9.6 now tells us that {0} ⊆ 𝛬 ⊆ 𝜋−1(𝑊1) ⊆ 𝜋−1(𝑊2) ⊆ 𝜋−1(𝑊𝑛−1) = 𝑉 is
a 𝑇-invariant flag. Hence 𝑇 is trigonalisable.

Proof alternate ending without flags. …there exists a basis 𝒫 of the quotient 𝑉/𝛬 so
that [𝑇]𝒫 is an upper-triangle matrix.

Lemma 9.8 tells us that 𝒫 can be lifted to a basis ℛ of 𝛬⟂ ⊆ 𝑉. Recall, this
lemma told us that there is an isomorphism 𝜑∶ 𝑈⟂ ∼−→ 𝑊/𝑈 for all vector spaces 𝑊 and
subspaces 𝑈 thereof. Therefore ℛ = 𝜑−1(𝒫) = (𝑟2, , … , 𝑟𝑛) must be a basis of 𝑈⟂ which
is 𝛬⟂ in our case.

Since 𝑣𝜆 is a basis of the 1-dimensional space 𝛬 = ⟨ 𝑣𝜆 ⟩ we conclude that𝒩 = (𝑣𝜆, 𝑟2,
… , 𝑟𝑛) is a basis of 𝑉. We apply Corollary 9.12 again with the basis 𝒩 and obtain

[𝑇 ]𝒩 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

𝜆 ∗

0 [𝑇]
𝒫

⎞
⎟⎟⎟⎟⎟⎟
⎠

which is an upper-triangle matrix.

Theorem 14.6 (Schur). Let 𝑇 be an endomorphism of a finite-dimensional inner-
product space 𝑉. 𝑇 is trigonalisable if and only if 𝑇 is orthogonally trigonalisable.

Proof. If 𝑇 is orthogonally trigonalisable, then 𝑇 is clearly trigonalisable, so let us
assume that 𝑇 is merely trigonalisable.

Let ℬ = (𝑏1, … , 𝑏𝑛) be a basis so that [𝑇 ]ℬ is trigonal. Then, 0 ⊆ ⟨ 𝑏1 ⟩ ⊆ ⟨ 𝑏1, 𝑏2 ⟩ ⊆
… ⊆ ⟨ 𝑏1, 𝑏2, … , 𝑏𝑛 ⟩ = 𝑉 is a 𝑇-invariant increasing sequence of linear subspaces (a flag)
of 𝑉. If we now perform Gram-Schmidt on ℬ we obtain an orthonormal basis ℬ′ of
𝑉 for which ⟨ 𝑏1, … , 𝑏𝑘 ⟩ = ⟨ 𝑏′1, … , 𝑏′𝑘 ⟩ holds true. Therefore 0 ⊆ ⟨ 𝑏′1 ⟩ ⊆ ⟨ 𝑏′1, 𝑏′2 ⟩ ⊆
… ⊆ ⟨ 𝑏′1, 𝑏′2, … , 𝑏′𝑛 ⟩ = 𝑉 is a flag of 𝑉 and [𝑇 ]ℬ′ is trigonal. Hence 𝑇 is orthogonally
trigonalisable.

14.3 The spectral theorem over ℝ

Theorem 14.7 (Spectral theorem over ℝ). Let (𝑉 , ⟨⋅, ⋅⟩) be a finite dimensional real
inner-product space and 𝑇 an endomorphism of 𝑉. The following are equivalent.

(i) 𝑇 is self-adjoint ([𝑇 ]ℬ is symmetric for every orthonormal basis ℬ).

(ii) 𝑇 is orthogonally diagonalisable.

(iii) 𝑇 is normal and diagonalisable.
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(iv) 𝑇 is normal and trigonalisable.

(v) 𝑇 is normal and its characteristic polynomial 𝑝𝑇 splits into linear factors
over ℝ.

Proof. We will show (𝑖𝑖) ⇒ (𝑖𝑖𝑖) ⇒ (𝑖𝑣) ⇒ (𝑣) ⇒ (𝑖𝑖) and (𝑖𝑖) ⇒ (𝑖) ⇒ (𝑖𝑣) ⇒ (𝑣) ⇒
(𝑖𝑖), although after having shown the first cycle, the implications (𝑖𝑣) ⇒ (𝑣) ⇒ (𝑖𝑖) in
the second cycle will already be done.

(𝑖𝑖) ⇒ (𝑖𝑖𝑖) is clear. If 𝑇 is orthogonally diagonalisable, there exists an orthonormal
basis ℬ of 𝑉 so that [𝑇 ]ℬ is diagonal. In particular [𝑇 ]ℬ = [𝑇 ]∗ℬ, so [𝑇 ]ℬ is normal and
therefore 𝑇 is normal.

(𝑖𝑖𝑖) ⇒ (𝑖𝑣) is clear. Diagonal matrices are trigonal.
(𝑖𝑣) ⇒ (𝑣) is clear. If 𝑇 is trigonalisable, there exists a basis ℬ of 𝑉 so that

𝐴 = [𝑇 ]ℬ is an upper-triangle matrix. Then char𝑇(𝜆) = det(𝐴 − 𝜆 id) = (𝐴1,1 −
𝜆)(𝐴2,2 − 𝜆)⋯(𝐴𝑛,𝑛 − 𝜆) splits into linear factors over ℝ.

(𝑣) ⇒ (𝑖𝑖) is a little more involved. Lemma 14.5 tells us that 𝑇 is trigonalisable.
Moreover, Theorem 14.6 tells us that 𝑇 is orthogonally trigonalisable with an orthogonal
basis ℬ = (𝑏1, … , 𝑏𝑛). Now we claim that [𝑇 ]ℬ is already diagonal.

Before we proceed, we recall the following general fact: Let 𝒞 = (𝑐1, … , 𝑐𝑛) be a
basis of the 𝑘-vector space 𝑉 ′, 𝐴 an 𝑛×𝑛 𝑘-matrix and 𝑣 a vector in 𝑉 ′ with [𝑣]𝒞 = (𝑣1,
… , 𝑣𝑛), then

([𝐴𝑣]𝒞)𝑖
= ∑

𝑗=1
𝐴𝑖,𝑗𝑣𝑗 in other words 𝐴𝑣 =

𝑛
∑
𝑖=1

(∑
𝑗=1

𝐴𝑖,𝑗𝑣𝑗)𝑐𝑖.

Now, we calculate using our recalled formula and that (𝑏𝑖)𝑗 = ([𝑏𝑖]𝒞)𝑗
= 𝛿𝑖,𝑗

𝑇𝑏1 =
𝑛
∑
𝑖=1

(
𝑛
∑
𝑗=1

𝑇𝑖,𝑗(𝑏1)𝑗)𝑏𝑖
(𝑏𝑖)𝑗=𝛿𝑖𝑗=

𝑛
∑
𝑖=1

𝑇𝑖,1𝑏𝑖
↑𝛥= 𝑇1,1𝑏1

and so

‖𝑇𝑏1‖
2 = ⟨𝑇𝑏1, 𝑇 𝑏1⟩ = ⟨𝑇1,1𝑏1, 𝑇1,1𝑏1⟩ = 𝑇1,1

2.

On the other hand

𝑇 ∗𝑏1 =
𝑛
∑
𝑖=1

(
𝑛
∑
𝑗=1

𝑇 ∗
𝑖,𝑗(𝑏1)𝑗)𝑏𝑖 =

𝑛
∑
𝑖=1

(
𝑛
∑
𝑗=1

𝑇𝑗,𝑖(𝑏1)𝑗)𝑏𝑖 =
𝑛
∑
𝑖=1

𝑇1,𝑖𝑏𝑖

and so

‖𝑇 ∗𝑏1‖
2 = ⟨𝑇 ∗𝑏1, 𝑇 ∗𝑏1⟩ = ⟨

𝑛
∑
𝑖=1

𝑇1,𝑖𝑏𝑖,
𝑛
∑
𝑖=1

𝑇1,𝑖𝑏𝑖⟩ = ∑
𝑖=1

𝑇1,𝑖
2∑
𝑗=1

𝑇1,𝑗
2 ⟨𝑏𝑖, 𝑏𝑗⟩ = ∑

𝑖=1
𝑇1,𝑖

2.

rrueger@ethz.ch - n.ethz.ch/~rrueger 48

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/


Linear Algebra

However, since 𝑇 is normal

‖𝑇𝑣‖2 = ⟨𝑇𝑣, 𝑇𝑣⟩ = ⟨𝑣, 𝑇 ∗𝑇𝑣⟩ = ⟨𝑣, 𝑇𝑇 ∗𝑣⟩ = ⟨𝑇𝑇 ∗𝑣, 𝑣⟩ = ⟨𝑇 ∗𝑣, 𝑇 ∗𝑣⟩ = ‖𝑇 ∗𝑣‖2

and so

𝑇1,1
2 =

𝑛
∑
𝑖=1

𝑇1,𝑖
2 = 𝑇1,1

2 + 𝑇1,2
2 +⋯+ 𝑇1,𝑛

2 ⟹ 𝑇1,2 = 𝑇1,3 = ⋯ = 𝑇1,𝑛 = 0.

Therefore 𝑇 has the shape

(
𝑇1,1 01×(𝑛−1)

0(𝑛−1)×1 ∗(𝑛−1)×(𝑛−1)
)

We can now proceed inductively to show that 𝑇 is in fact already diagonal.
This completes proving the first cycle (𝑖𝑖) ⇒ (𝑖𝑖𝑖) ⇒ (𝑖𝑣) ⇒ (𝑣) ⇒ (𝑖𝑖). Now we

will prove (𝑖𝑖) ⇒ (𝑖) ⇒ (𝑖𝑣).
(𝑖𝑖) ⇒ (𝑖). This is clear. If 𝑇 is orthogonally diagonalisable with the basis ℬ then

[𝑇 ]ℬ is diagonal and therefore symmetric. Considering any other orthonormal basis ℬ′

we see that

[𝑇 ]ℬ′ = [id]ℬℬ′[𝑇 ]ℬ[𝑇 ]ℬ
′

ℬ = ([id]ℬ
′

ℬ )
−1

[𝑇 ]ℬ[𝑇 ]ℬ
′

ℬ = ([id]ℬ
′

ℬ )
𝑇
[𝑇 ]ℬ[𝑇 ]ℬ

′

ℬ

Now

([𝑇 ]ℬ′)
𝑇
= (([id]ℬ

′

ℬ )
𝑇
[𝑇 ]ℬ[𝑇 ]ℬ

′

ℬ )
𝑇
= ([𝑇 ]ℬ

′

ℬ )
𝑇
([𝑇 ]ℬ)

𝑇(([id]ℬ
′

ℬ )
𝑇
)
𝑇
= ([𝑇 ]ℬ

′

ℬ )
𝑇
([𝑇 ]ℬ)

𝑇[id]ℬ
′

ℬ = [𝑇 ]ℬ′

so [𝑇 ]ℬ is in fact symmetric for all orthonormal bases ℬ′.
(𝑖) ⇒ (𝑖𝑣). If 𝑇 is self-adjoint, it is clearly normal. It remains to show that 𝑇 is

trigonalisable. Here we use our fact again, that an endomorphism is trigonalisable if
and only if the characteristic polynomial splits into linear factors (over ℝ in this case).

The characteristic polynomial always splits over ℂ. Let 𝜆 be a (possibly complex)
root, and therefore 𝜆 is an eigenvalue. If we can show that 𝜆 is in fact real, then all
roots of the characteristic polynomial are real, and it splits over ℝ.

Consider that 𝑇 and id are normal, so 𝑇 − 𝜆 id is normal. Indeed,

(𝑇 − 𝜆 id)(𝑇 − 𝜆 id)∗ = (𝑇 − 𝜆 id)(𝑇 ∗ − 𝜆 id∗)

= (𝑇 − 𝜆 id)(𝑇 ∗ − 𝜆 id)

= 𝑇𝑇 ∗ − 𝜆𝑇 ∗ − 𝜆𝑇 + 𝜆2 id

= 𝑇 ∗𝑇 − 𝜆𝑇 ∗ − 𝜆𝑇 + 𝜆2 id

= (𝑇 − 𝜆 id)∗(𝑇 − 𝜆 id)

Therefore ‖(𝑇 − 𝜆 id)𝑣‖ = ‖(𝑇 − 𝜆 id)∗𝑣‖. Indeed, for any normal endomorphism 𝑆 we
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show

‖𝑆𝑣‖ = ⟨𝑆𝑣, 𝑆𝑣⟩ = ⟨𝑣, 𝑆∗𝑆𝑣⟩ = ⟨𝑣, 𝑆𝑆∗𝑣⟩ = ⟨𝑆𝑆∗𝑣, 𝑣⟩ = ⟨𝑆∗𝑣, 𝑆∗𝑣⟩ = ‖𝑆∗𝑣‖ real= ‖𝑆∗𝑣‖.

Finally, we conclude that if 𝑣 is an eigenvector of 𝑇 to the eigenvalue 𝜆, then 𝑣 is an
eigenvector of 𝑇 ∗ for the eigenvector 𝜆. Indeed

‖(𝑇 − 𝜆 id)𝑣‖ = 0 = ‖(𝑇 − 𝜆 id)∗𝑣‖ = ‖𝑇 ∗ − 𝜆 id 𝑣‖

However, 𝑇 is self-adjoint, so

𝜆𝑣 = 𝑇(𝑣) = 𝑇 ∗(𝑣) = 𝜆𝑣

and 𝜆 = 𝜆 is real. Therefore the characteristic polynomial of 𝑇 has roots only in ℝ,
therefore it splits over ℝ and hence 𝑇 is trigonalisable.

This completes the proof of the real spectral theorem.

rrueger@ethz.ch - n.ethz.ch/~rrueger 50

mailto:rrueger@ethz.ch
https://n.ethz.ch/~rrueger/


Linear Algebra

15

The Jordan Normal Form

15.1 Matrices in Jordan Form

Let 𝜆 lie in a field 𝑘. We define a Jordan block of size 𝑛 and eigenvalue 𝜆 as the 𝑛×𝑛
matrix

𝐽𝜆,𝑛 =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

𝜆 1
𝜆 1

𝜆 ⋱
⋱ 1

𝜆

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

We immediately remark that a Jordan block 𝐽𝜆,𝑛 with eigenvalue 𝜆 (and size 𝑛) indeed
has 𝜆 as an eigenvalue: using 𝑒𝑖 to denote the 𝑖-th standard basis vector 𝑒𝑖 = (0,… , 1,…
, 0), we see that 𝐽𝜆,𝑛𝑒1 = 𝜆𝑒1. The characteristic polynomial of 𝐽𝜆,𝑛 is 𝑝(𝑥) = (𝑥 − 𝜆)𝑛

and so the algebraic multiplicity of 𝜆 is 𝑛. The minimal polynomial of 𝐽𝜆,𝑛 is also
𝑚(𝑥) = (𝑥 − 𝜆)𝑛. This is easily seen by calculating powers of 𝐽𝜆,𝑛 − 𝜆𝐼𝑛 = 𝐽0,𝑛 which
is an easy calculation because most entries are zero. The 𝑘-th power of 𝐽0,𝑛 is zero
everywhere with ones on the 𝑘-th superdiagonal4. The geometric multiplicity of 𝜆 is
1. Proving this requires almost no calculation because 𝐽𝜆,𝑛 − 𝜆𝐼𝑛 is already in row-
echelon form with one zero-column. In particular, Jordan blocks are good examples of
non-diagonalisable matrices.

We then go on to say that a matrix 𝑀 is in Jordan form if there exist Jordan blocks
𝐽𝜆1,𝑛1, … , 𝐽𝜆𝑘,𝑛𝑘 so that

𝑀 =
⎛
⎜⎜
⎝

𝐽𝜆1,𝑛1

⋱
𝐽𝜆𝑘,𝑛𝑘

⎞
⎟⎟
⎠

Calculations on matrices in Jordan form are easy. Many properties can be read off
the matrix directly

Proposition 15.1. Let 𝑀 be a matrix in Jordan form with blocks 𝐽𝜆1,𝑛1, … , 𝐽𝜆𝑘,𝑛𝑘.
Then

(i) Every 𝜆𝑖 is an eigenvalue of 𝑀.

4Nebendiagonale
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(ii) The geometric multiplicity of 𝜆𝑖 is equal to the number of Jordan blocks in
𝑀 with eigenvalue 𝜆𝑖.

(iii) The characteristic polynomial of 𝑀 is

𝑝𝑀(𝑥) = (𝑥 − 𝜆1)
𝑛1 ⋯(𝑥 − 𝜆𝑘)

𝑛𝑘

(iv) The minimal polynomial of 𝑀 is

𝑝𝑀(𝑥) = (𝑥 − 𝜇1)
𝑚1 ⋯(𝑥 − 𝜇𝑙)

𝑚𝑙

where 𝜇1, … , 𝜇𝑙 is the list of distinct eigenvalues of 𝑀 and 𝑚𝑖 is the size of
the largest Jordan block 𝜆𝜆𝑗,𝑛𝑗 with 𝜆𝑖 = 𝜇𝑖.

Unfortunately, calculating powers of Jordan blocks is not as easy as calculating
powers of diagonal matrices, but the following result will show that it is still manageable.

Lemma 15.2 (Powers of jordan blocks). Setting (𝑎𝑏) = 0 when 𝑏 > 𝑎 we obtain

𝐽𝜆,𝑛𝑘 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜆𝑘 (𝑘1)𝜆
𝑘−1 (𝑘2)𝜆

𝑘−2 ⋯ ⋯ (𝑘𝑛)𝜆
𝑘−𝑛

𝜆𝑘 (𝑘1)𝜆
𝑘−1 ⋯ ⋯ (𝑘𝑛)𝜆

𝑘−𝑛+1

𝜆𝑘 ⋯ ⋯ ⋮
⋱ ⋯ ⋮

𝜆𝑘 (𝑘1)𝜆
𝑘−1

𝜆𝑘

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

15.2 The Theorem of Jordan

Theorem 15.3 (Jordan). Let 𝑇 be an endomorphism of the (finite dimensional)
𝑘-vector space 𝑉 whose characteristic polynomial splits into linear factors over 𝑘.
Then there exists a basis ℬ of 𝑉 so that [𝑇 ]ℬ is in Jordan form. This Jordan form
representation of 𝑇 is unique up to permutations of the blocks.

It is because of the uniqueness (up to permutation of the blocks) that we call this
the Jordan normal form.

15.3 Preparations in the quotient space

Definition 15.4 (Lifetime of a vector). Let 𝑁 be a nilpotent endomorphism of the
vector space 𝑉 and let 𝑣 lie in 𝑉. Since 𝑁 is nilpotent, there exists a 𝑘 so that 𝑁𝑘(𝑣) = 0.
We call the largest value 𝑙 for which 𝑁 𝑙(𝑣) ≠ 0 the lifetime5 of the vector 𝑣 and denote
it by 𝑙𝑁(𝑣).

5Lebensdauer
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Lemma 15.5. Let 𝑁 be a nilpotent endomorphism of 𝑉. Let 𝑣 lie in 𝑉 and set
𝑙 = 𝑙𝑁(𝑣). Then the vectors 𝑁 𝑙(𝑣), 𝑁 𝑙−1(𝑣),… ,𝑁(𝑣), 𝑣 are linearly independent.

Proof. Consider 𝛼𝑙𝑁 𝑙(𝑣)+𝛼𝑙−1𝑁 𝑙−1(𝑣),… , 𝛼1𝑁(𝑣)+𝛼0𝑣 = 0. Applying 𝑁 𝑙 we obtain
𝛼𝑙𝑁 2𝑙(𝑣) + 𝛼𝑙−1𝑁 2𝑙−1(𝑣),… , 𝛼1𝑁 𝑙+1(𝑣) + 𝛼0𝑁 𝑙(𝑣) = 𝛼0𝑁 𝑙(𝑣) = 0. So 𝛼0 = 0. By
repeatedly applying 𝑁 𝑙−𝑖 for 𝑖 = 1,… , 𝑙 we conclude that all 𝛼𝑖 = 0.

The following lemma is quite technical and can be used as a black box result.

Lemma 15.6 (Lifting lemma). Let 𝑁 be a nilpotent endomorphism of 𝑉. Let 𝑤 be
a vector in 𝑉 of maximal lifetime and write 𝑊 = Span(𝑁 𝑙𝑁(𝑤)(𝑤),𝑁 𝑙𝑁(𝑤)−1(𝑤),… ,
𝑁(𝑤),𝑤). Let 𝑉 = 𝑉/𝑊. For every vector 𝑢 in 𝑉 there exists a vector 𝑣 in 𝑉 so
that 𝑣 = 𝑢 and that 𝑙𝑁(𝑣) = 𝑙𝑁(𝑢).

In other words, in the set of vectors 𝜋−1(𝑢) = {𝑣 ∈ 𝑉 ∣ 𝑣 = 𝑢} one them must
have the same lifetime as 𝑢. Note that although 𝑢 is clearly in 𝜋−1(𝑢), the lifetime
𝑙𝑁(𝑢) may not equal the lifetime 𝑙𝑁(𝑢).

We call it the lifting lemma, because it says that we can “lift” a vector out of
the quotient without changing the lifetime.

Proof. Since 𝑊 is 𝑁-invariant, we know that 𝑁 induces a well-defined endomorphism
𝑁∶ 𝑉 −→ 𝑉. We also know that 𝑁

𝑘
= 𝑁𝑘 and so 𝑁 is also nilpotent. This means that

the lifetime with respect to 𝑁 of a vector in 𝑉/𝑊 is well-defined. Moreover, the lifetime
𝑙𝑁(𝑢) of any vector 𝑢 in 𝑉 is a priori less than the lifetime 𝑙𝑁(𝑣) of any vector 𝑣 in

𝜋−1(𝑢). Indeed, if 0 ≠ 𝑁
𝑘
(𝑢) = 𝑁𝑘(𝑣) for any 𝑘 ≥ 1, then 𝑁𝑘(𝑣) is not in 𝑈 and in

particular not zero.
To shorten notation in the rest of the proof, we set 𝑙 = 𝑙𝑁(𝑢), 𝑙 = 𝑙𝑁(𝑤) and let 𝑣

be a fixed vector in 𝑉 so that 𝑣 = 𝑢.
Now set 𝑧 = 𝑁 𝑙+1(𝑣). Since 𝑙 is the lifetime of 𝑢 = 𝑣 with respect to 𝑁, we see that

𝑧 is in 𝑊 = ker(𝜋 = 𝜋𝑊). Indeed,

0 = 𝑁
𝑙+1

(𝑣) = 𝑁 𝑙+1(𝑣) = 𝑁 𝑙+1(𝑣) = 𝜋(𝑁 𝑙+1(𝑣)) = 𝜋(𝑧).

Moreover, 𝑁 𝑙−𝑙(𝑧) = 𝑁 𝑙−𝑙(𝑁 𝑙+1(𝑣)) = 𝑁 𝑙+1(𝑣) = 0 because 𝑁 𝑙+1(𝑣) ≠ 0 would imply
that 𝑣 has a longer lifetime than 𝑤. So 𝑧 is also in ker(𝑁 𝑙−𝑙).

We can now put these two facts together. Since 𝑧 lies in 𝑊 = Span(𝑁 𝑙(𝑤),𝑁 𝑙−1(𝑤),
… ,𝑁(𝑤),𝑤) there are coefficients 𝛼𝑖 so that 𝑧 = 𝛼𝑙𝑁 𝑙(𝑤)+𝛼𝑙−1𝑁 𝑙−1(𝑤)+⋯+𝛼1𝑁(𝑤)+
𝛼0𝑤. However, 𝑧 also lies in ker(𝑁 𝑙−𝑙), so

0 = 𝑁 𝑙−𝑙(𝑧) =
𝑙

∑
𝑖=0

𝛼𝑙𝑁 𝑖+𝑙−𝑙(𝑤).
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Since 𝑖 + 𝑙 − 𝑙 ≥ 𝑙 + 1 if and only if 𝑖 ≥ 𝑙 + 1, all terms 𝑁 𝑖+𝑙−𝑙(𝑤) vanish for 𝑖 ≥ 𝑙 + 1.
Therefore the sum collapses to

0 = 𝑁 𝑙−𝑙(𝑧) =
𝑙

∑
𝑖=0

𝛼𝑙𝑁 𝑖+𝑙−𝑙(𝑤) = 𝛼0𝑁 𝑙−𝑙(𝑤) +⋯+ 𝛼𝑙𝑁
𝑙(𝑤).

and since 𝑁 𝑙(𝑤),𝑁 𝑙−1(𝑤),… ,𝑁(𝑤),𝑤 are linearly independent, we see that all 𝛼0, … ,
𝛼𝑙 must vanish. Hence

𝑧 = 𝛼𝑙𝑁 𝑙(𝑤) +⋯+ 𝛼𝑙−𝑙𝑁
𝑙−𝑙(𝑤) = 𝑁 𝑙+1 (𝛼𝑙𝑁 𝑙−𝑙−1(𝑤) +⋯+ 𝛼𝑙−𝑙𝑁

𝑙−2𝑙−1(𝑤)) .

Define 𝑟 = 𝛼𝑙𝑁 𝑙−𝑙−1(𝑤) +⋯+ 𝛼𝑙−𝑙𝑁
𝑙−2𝑙−1(𝑤) so 𝑧 = 𝑁 𝑙+1(𝑟) and note that 𝑟 lies in

𝑊 = ker(𝜋).
We now define our final candidate 𝑣′ = 𝑣 − 𝑟. First we must verify that 𝑣′ = 𝑢.

Indeed, 𝑣′ = 𝜋(𝑣′) = 𝜋(𝑣 − 𝑟) = 𝜋(𝑣) − 𝜋(𝑟) = 𝜋(𝑣) = 𝑣 = 𝑢. Finally, we must verify
that the length of 𝑙𝑁(𝑣′) is 𝑙 = 𝑙𝑁(𝑢). On the one hand we calculate

𝑁 𝑙+1(𝑣′) = 𝑁 𝑙+1(𝑣) − 𝑁 𝑙+1(𝑟) = 𝑧 − 𝑧 = 0

so 𝑙𝑁(𝑣′) ≤ 𝑙. On the other hand we know that for any vector 𝑣 in 𝜋−1(𝑢), 𝑙𝑁(𝑣) ≥
𝑙𝑁(𝑢).

Lemma 15.7 (Linear independence of lifts). Suppose 𝑆 is linearly independent in
𝑉/𝑊, then there exists a linearly independent set 𝑆 in 𝑉 so that 𝜋(𝑆) = 𝑆.

Proof. For every element 𝑠 in 𝑆 we choose an element 𝑠 in 𝑉 so that 𝜋(𝑠) = 𝑠. Now
suppose 𝛼1𝑠1 + ⋯ + 𝛼𝑘𝑠𝑘 = 0. Then 𝛼1𝑠1 + ⋯ + 𝛼𝑘𝑠𝑘 = 0 and all the 𝛼𝑖 must be
zero.

15.4 Jordan Normal form of Nilpotent endomorphisms

Before we prove the existence of the Jordan normal form of arbitrary endomorphisms
(whose characteristic polynomials split), we will prove that every nilpotent endomor-
phism 𝑁 (of finite dimensional) vector spaces has a Jordan normal form. The good news
here is, that the hard work has already been done in the lifting lemma (Lemma 15.6).

We know that we must find an 𝑁-invariant linear subspace decomposition 𝑉 =
𝑉1 ⊕⋯⊕ 𝑉𝑘 of 𝑉 with bases ℬ𝑖 of 𝑉𝑖 so that [𝑁 |𝑉𝑖]ℬ𝑖

= 𝐽0,𝑛𝑖 where dim(𝑉𝑖) = 𝑛𝑖.
Suppose we have a basis ℬ𝑖 = (𝑏1, … , 𝑏𝑛𝑖) of 𝑉𝑖 so that [𝑁 |𝑉𝑖]ℬ𝑖

= 𝐽0,𝑛𝑖. Then, by
definition

[𝑁 (𝑏𝑗)]ℬ𝑖
=

⎧
⎨
⎩

0 if 𝑗 = 1

𝑒𝑗−1 if 𝑗 > 1
equivalently 𝑁(𝑏𝑗) =

⎧
⎨
⎩

0 if 𝑗 = 1

𝑏𝑗−1 if 𝑗 > 1.
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Therefore 𝑏𝑛−1 = 𝑁(𝑏𝑛) and consequently 𝑏𝑛−𝑗 = 𝑁 𝑗(𝑏𝑛). Notably, 0 ≠ 𝑏1 = 𝑁𝑛𝑖−1(𝑏𝑛)
and 𝑁(𝑏1) = 𝐵𝑛𝑖(𝑏𝑛) = 0. Therefore 𝑏𝑛 is a vector in 𝑉𝑖 with lifetime 𝑛𝑖 with respect
to 𝑁.

Conversely, given any non-zero vector 𝑣𝑖 we obtain a linearly independent set ℬ𝑣𝑖
def.=

(𝑁 𝑙(𝑣𝑖)(𝑣𝑖), … ,𝑁(𝑣𝑖), 𝑣𝑖). If we set 𝑉𝑖 = Span(ℬ𝑣𝑖) we obtain that [𝑁 |𝑉𝑖]ℬ𝑣𝑖
= 𝐽0,𝑛𝑖 where

𝑛𝑖 = dim(𝑉𝑖) = 𝑙(𝑣𝑖). This gives us the following

Lemma 15.8. Let 𝑁 be a nilpotent endomorphism of the finite dimensional 𝑘-
vector space 𝑉. Finding an 𝑁-invariant linear subspace decomposition 𝑉 = 𝑉1 ⊕
⋯⊕𝑉𝑘 of 𝑉 with bases ℬ𝑖 of 𝑉𝑖 so that [𝑁 |𝑉𝑖]ℬ𝑖

= 𝐽0,𝑛𝑖 is equivalent to finding vectors
𝑣1, … , 𝑣𝑘 so that

ℬ = (ℬ𝑣1, … , ℬ𝑣𝑘) = (𝑁 𝑙(𝑣1)(𝑣1), … ,𝑁(𝑣1), 𝑣1, 𝑁 𝑙(𝑣2)(𝑣2), … ,𝑁(𝑣2), 𝑣2, … ,𝑁 𝑙(𝑣𝑘), … ,𝑁(𝑣𝑘), 𝑣𝑘)

is a basis of 𝑉.

Remark. Please note that the ordering of the basis vectors 𝑁 𝑗(𝑣𝑖) within the bases
ℬ𝑣𝑖 is important, but the ordering of the bases ℬ𝑣𝑖 within the entire basis ℬ is not
important.

Permuting the bases of the linear subspaces ℬ = (ℬ𝑣2, ℬ𝑣1, ℬ𝑣3, … , ℬ𝑛𝑘 amounts to
permuting the Jordan blocks. However permuting the vectors within will break the
Jordan Form up.

Consider the following matrix with block structure 𝐽0,3, 𝐽0,2

[𝑁 ]ℬ =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0
0 0 1
0 0 0

0 1
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

If ℬ = (ℬ𝑣, ℬ𝑤) = (𝑁 2(𝑣), 𝑁(𝑣), 𝑣, 𝑁(𝑤),𝑤) is the basis, then switching ℬ𝑣, ℬ𝑤 will
result in switching the blocks

[𝑁 ](ℬ𝑤,ℬ𝑣)
=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 1
0 0

0 1 0
0 0 1
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠
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however changing the order of the vectors within ℬ𝑣 would lead to

[𝑁 ](𝑣,𝑁 2(𝑣),𝑁(𝑣),𝑁(𝑤),𝑤) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1
1 0 0
0 0 0

0 1
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

which is no longer in Jordan Form.

We can now prove the existence of the Jordan normal form for nilpotent endomor-
phisms. We will do so via induction and the lifting lemma.

Proof of the existence of a Jordan normal form for nilpotent endormophisms. Sup-
pose 𝑁 is a nilpotent endomorphism of the 𝑛-dimensional 𝑘-vector space whose char-
acteristic polynomial splits over 𝑘 and we know that for every endomorphism of an
(𝑛′ ≤ 𝑛 − 1)-dimensional 𝑘-vector space whose characteristic polynomial splits we can
find vectors 𝑣1, … , 𝑣𝑘 so that ℬ = (ℬ𝑣1, … , ℬ𝑣𝑘) is a basis.

Let 𝑤 be a vector in 𝑉 with maximal lifetime with respect to 𝑁, write down ℬ𝑤 =
(𝑁 𝑙(𝑤)(𝑤),… ,𝑁(𝑤),𝑤) and set 𝑊 = Span(ℬ𝑤), 𝑉 = 𝑉/𝑊. Then dim(𝑉) < 𝑛 =

dim(𝑉 ). Moreover, since 𝑊 is 𝑁-invariant, 𝑁 induces a well-defined endomorphism 𝑁
on 𝑉. Then by the induction hypothesis, we there exist vectors 𝑢1…𝑢𝑙 in 𝑉 so that

ℬ = (ℬ𝑢1, … , ℬ𝑢𝑘) = (𝑁
𝑙𝑁(𝑢1)(𝑢1), 𝑁

𝑙𝑁(𝑢1)−1
(𝑢1), …)

is a basis of 𝑉.
We can now apply the lifting lemma (Lemma 15.6) to each of the vectors 𝑢𝑖 to obtain

vectors 𝑢𝑖 with 𝑙𝑁(𝑢𝑖) = 𝑙𝑁(𝑢𝑖). Therefore |(ℬ𝑢1, … , ℬ𝑢𝑘)| = |(ℬ𝑢1, … , ℬ𝑢𝑘)| = dim(𝑉)
and (ℬ𝑢1, … , ℬ𝑢𝑘) is a basis of 𝑊⟂.

Finally, since ℬ𝑤 is a basis of 𝑊, and (ℬ𝑢1, … , ℬ𝑢𝑘) a basis of 𝑊⟂ we obtain a full
basis (ℬ𝑤, ℬ𝑢1, … , ℬ𝑢𝑘). This completes the proof.
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